Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(18): 27452-27464, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38512576

RESUMEN

Under the present investigation, the submerged plant Potamogeton pusillus has been tested for the removal of lead (Pb) and cadmium (Cd). P. pusillus removal efficiency and accumulation capacity were examined in separated Pb and Cd solutions, at 0.5, 1.0, and 2 mg L-1, and in solutions where both metals were present at the same concentration (0.5, 1.0, and 2 mg L-1), under laboratory conditions for 3, 7, and 10 days. Also, we examined the removal efficiency and accumulation capacity when a set of plants were exposed to 0.5 mg L-1 of Pb (or Cd) and increasing concentrations (0.5, 1, and 2 mg L-1) of Cd (or Pb) for 10 days. The effect of Cd and Pb was assessed by measuring changes in the chlorophylls, carotenoids, and malondialdehyde contents. Results showed that P. pusillus could accumulate Cd and Pb from individual solutions. Roots and leaves accumulated the highest amount of Cd and Pb followed by the stems. Some phytotoxic effects were observed, especially at individual Cd exposures, but these effects were not observed in the two-metal system. The removal and accumulation of Pb by P. pusillus were significantly enhanced in the presence of Cd under certain conditions, presenting a good alternative for the removal of these metals from polluted aquifers. To the extent of our knowledge, this is the first report on both enhanced phytoextraction of Pb in the presence of Cd and bioaccumulation of these heavy metals by P. pusillus.


Asunto(s)
Bioacumulación , Biodegradación Ambiental , Cadmio , Plomo , Potamogetonaceae , Cadmio/metabolismo , Plomo/metabolismo , Potamogetonaceae/metabolismo , Contaminantes Químicos del Agua/metabolismo
2.
J Phys Chem A ; 126(38): 6751-6761, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36112102

RESUMEN

Rate coefficients of the O3-initiated oxidation of allyl methyl sulfide (H2C═CHCH2SCH3, AMS) and allyl ethyl sulfide (H2C═CHCH2SCH2CH3, AES) were determined at atmospheric conditions by "in situ" FTIR. The relative kinetic experiments were performed using methylcyclohexane (McH) and carbon monoxide (CO) as nascent OH radical scavengers and in the absence of any scavenger, to determine the impact that the formation of OH radicals has on the rate coefficients. In the absence of scavengers, values of kAMS+O3 = (5.23 ± 3.57) × 10-18 and kAES+O3 = (5.76 ± 1.80) × 10-18 cm3 molecule-1 s-1 were obtained. In the presence of the scavengers, however, the rates decreased to kAMS+O3+McH = (3.92 ± 1.92) × 10-18 and kAMS+O3+CO = (2.63 ± 0.47) × 10-18 cm3 molecule-1 s-1 for AMS, and kAES+O3+McH = (4.78 ± 1.38) × 10-18 and kAES+O3+CO = (3.50 ± 0.27) × 10-18 cm3 molecule-1 s-1 for AES. On the basis of these results, we have decided to recommend the values obtained using CO as scavenger as those best representing the rate coefficient for the reactions of O3 with AMS and AES. The reaction mechanism was explored using DFT and post-Hartree-Fock computational methods. It is shown that the barrier for the common cyclization to primary ozonide (-3.7 ± 0.1 kcal mol-1) followed by other reactions, as well as that for the reaction with the sulfur atom (-5.1 ± 0.1 kcal mol-1), is small and quite close, meaning that both reaction paths should contribute significantly to the global reaction rate.

3.
Chemosphere ; 288(Pt 2): 132546, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34653479

RESUMEN

Relative rate coefficients of the OH radical -initiated oxidation of allyl methyl sulfide (AMS, H2CCHCH2SCH3) and allyl ethyl sulfide (AES, H2CCHCH2SCH2CH3) have been measured at atmospheric pressure of synthetic air and 298 K: kAMS= (4.98 ± 1.42) and kAES= (6.88 ± 1.49) × 10-11 cm3 molecule-1 s-1 by means of in situ FTIR spectroscopy. In addition, the molar yields of the main reaction products of AMS with OH radicals formed in the absence and presence of nitric oxides (NOX) were determined to be the following: sulfur dioxide (95 ± 12) % and (51 ± 12) % for acrolein (50 ± 9) % and (41 ± 9) %. In the reaction of AES with OH radicals, the following molar yields were obtained: for sulfur dioxide (88 ± 13) % and (56 ± 12) % for acrolein (36 ± 9) % and (41 ± 9) %. The present results suggest that the abstraction at C3 plays an important role in the oxidation mechanism as the addition to the double bond. This work represents the first study of the OH radical interaction with AMS and AES carried out under atmospheric conditions. The atmospheric implications were discussed in terms of the atmospheric residence times of the sulfur-containing compounds studied and the products formed in the presence and absence of NOx. SO2 formation seems to be the main fate of the gas-phase allyl sulfides oxidation with significant acidifying potentials and short-chain aldehydes production like formaldehyde and acetaldehyde.


Asunto(s)
Física , Sulfuros , Compuestos Alílicos , Cinética
4.
Chemosphere ; 286(Pt 1): 131562, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34315082

RESUMEN

Rate coefficients for the gas-phase reactions of OH radicals with a series of fluorinated diketones have been determined for the first time at (298 ± 3) K and atmospheric pressure using the relative method and FTIR spectroscopy and GC-FID to monitor both reactants and references. The following values, in 10-11 cm3 molecule-1 s-1, were obtained for 1,1,1-trifluoro-2,4-pentanedione (TFP), 1,1,1-trifluoro-2,4-hexanedione (TFH) and 1,1,1-trifluoro-5-methyl-2,4-hexanedione (TFMH), respectively: k1(TFP + OH) = (1.3 ± 0.4), k2(TFH + OH) = (2.2 ± 0.8), k3(TFMH + OH) = (3.3 ± 1.0). The results are discussed with respect to the keto-enolic tautomerization specific for ß-diketones. Based on the present results, the tropospheric lifetimes of TFP, TFH and TFMH upon degradation by OH radicals were calculated as 21, 13 and 8 h, respectively indicating that transport might play a role in the atmospheric fate of the studied compounds. Photochemical ozone creation potentials were estimated for TFP, TFH and TFMH to be: 23, 29 and 34, respectively.


Asunto(s)
Radical Hidroxilo , Ozono , Cloro , Cinética , Fotólisis
5.
Chemosphere ; 274: 129659, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33549882

RESUMEN

Rate coefficients for the gas-phase reactions of OH radicals with CH3C(O)CHClC(O)OCH3 (k1) and CH3C(O)CHClC(O)OCH2CH3 (k2) were measured using the relative technique with different reference compounds. The experiments were performed at (298 ± 2) K and 750 Torr of nitrogen or synthetic air by in situ FTIR spectroscopy and GC-FID chromatography. The following rate coefficients (in units of cm3molecule-1 s-1) were obtained: k1FTIR= (2.70 ± 0.51) × 10-11; k1GC-FID= (2.30 ± 0.71) × 10-11 and k2FTIR= (3.37 ± 0.62) × 10-11; k2GC-FID= (3.26 ± 0.85) × 10-11. This work reports the first kinetic study for the reactions of OH radicals with the mentioned chloroacetoacetates. Additionally, product studies are reported in similar conditions of the kinetic experiments. Acetic acid, acetaldehyde, formyl chloride, and methyl 2-chloro-2-oxoacetate were positively identified and quantified as degradation products. According to the identified products, atmospheric chemical mechanisms were proposed. The environmental implications of these reactions were assessed by the tropospheric lifetimes calculations of the title chloroesters. Significant average ozone production of 4.16 ppm for CH3C(O)CHClC(O)OCH3 and 5.98 ppm for CH3C(O)CHClC(O)OCH2CH3, respectively were calculated.


Asunto(s)
Presión Atmosférica , Ozono , Cloro , Cinética , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA