Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ultrasound Med Biol ; 27(12): 1583-94, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11839403

RESUMEN

In this paper we propose a novel feature-based contrast enhancement approach to enhance the quality of noisy ultrasound (US) images. Our approach uses a phase-based feature detection algorithm, followed by sparse surface interpolation and subsequent nonlinear postprocessing. We first exploited the intensity-invariant property of phase-based acoustic feature detection to select a set of relevant image features in the data. Then, an approximation to the low-frequency components of the sparse set of selected features was obtained using a fast surface interpolation algorithm. Finally, a nonlinear postprocessing step was applied. Results of applying the method to echocardiographic sequences (2-D + T) are presented. The results demonstrate that the method can successfully enhance the intensity of the interesting features in the image. Better balanced contrasted images are obtained, which is important and useful both for manual processing and assessment by a clinician, and for computer analysis of the sequence. An evaluation protocol is proposed in the case of echocardiographic data and quantitative results are presented. We show that the correction is consistent over time and does not introduce any temporal artefacts.


Asunto(s)
Ecocardiografía , Aumento de la Imagen/métodos , Acústica , Algoritmos , Humanos , Reproducibilidad de los Resultados
2.
IEEE Trans Image Process ; 8(10): 1374-87, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-18267409

RESUMEN

Typically, the linear image restoration problem is an ill-conditioned, underdetermined inverse problem. Here, stabilization is achieved via the introduction of a first-order smoothness constraint which allows the preservation of edges and leads to the minimization of a nonconvex functional. In order to carry through this optimization task, we use stochastic relaxation with annealing. We prefer the Metropolis dynamics to the popular, but computationally much more expensive, Gibbs sampler. Still, Metropolis-type annealing algorithms are also widely reported to exhibit a low convergence rate. Their finite-time behavior is outlined and we investigate some inexpensive acceleration techniques that do not alter their theoretical convergence properties; namely, restriction of the state space to a locally bounded image space and increasing concave transform of the cost functional. Successful experiments about space-variant restoration of simulated synthetic aperture imaging data illustrate the performance of the resulting class of algorithms and show significant benefits in terms of convergence speed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...