Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Fish Biol Fish ; 32(1): 209-230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33500602

RESUMEN

Abstract: The ocean economy is experiencing rapid growth that will provide benefits but will also pose environmental and social risks. With limited space and degraded resources in coastal areas, offshore waters will be a particular focus of Blue Economy expansion over the next decade. When emerging and established economic sectors expand in offshore waters (within national Exclusive Economic Zones), different potential Blue Economy opportunities and challenges will arise. Following a series of interdisciplinary workshops, we imagine two technically possible futures for the offshore Blue Economy and we identify the actions required to achieve the more sustainable outcome. Under a business as usual scenario the focus will remain on economic growth, the commodification of nature, the dominance of private over public and cultural interests, and prioritisation of the interests of current over future generations. A more sustainable scenario would meet multiple UN Sustainable Development Goals and ensure inclusive economic developments, environmental sustainability, and fair and equitable access to resources and technologies across users, nations, and generations. Challenges to this more sustainable future are a lack of infrastructure and technology to support emerging offshore sectors, limited understanding of environmental impacts, inequitable outcomes, and a lack of planning and governmental oversight. Addressing these challenges will require a shift in societal values, a more balanced allocation of funding to offshore activities, transparency in information sharing between industries and across nations, and adjustment of international legal and institutional mechanisms. The sustainable and equitable offshore Blue Economy we envisage is achievable and provides a unique opportunity to build global capacity and partnership.

2.
Rev Fish Biol Fish ; 32(1): 161-187, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34366579

RESUMEN

The concentration of human population along coastlines has far-reaching effects on ocean and societal health. The oceans provide benefits to humans such as food, coastal protection and improved mental well-being, but can also impact negatively via natural disasters. At the same time, humans influence ocean health, for example, via coastal development or through environmental stewardship. Given the strong feedbacks between ocean and human health there is a need to promote desirable interactions, while minimising undesirable interactions. To this end, we articulate two scenarios for 2030. First, Business-as-Usual, named 'Command and (out of) Control', focuses on the anticipated future based on our current trajectory. Second, a more sustainable scenario called 'Living and Connecting', emphasises the development of interactions between oceans and society consistent with achieving the Sustainable Development Goals. We describe a potential pathway to achieving the 'Living and Connecting' scenario, centred on improving marine citizenship, achieving a more equitable distribution of power among stakeholders, and more equitable access to resources and opportunities. The constituent actions of this pathway can be categorised into four groups: (i) improved approaches to science and health communication that account for society's diverse values, beliefs and worldviews, (ii) a shift towards more trusted relationships among stakeholders to enable two-way knowledge exchange, (iii) economic incentives that encourage behavioural changes necessary for achieving desired sustainability outcomes, and (iv) stronger regulations that simultaneously focus on ocean and human health. We contend that these changes will provide improved outcomes for both oceans and society over the United Nations Decade of Ocean Science. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09669-5.

3.
Glob Chang Biol ; 23(5): 2047-2057, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28122146

RESUMEN

Shifts in species ranges are a global phenomenon, well known to occur in response to a changing climate. New species arriving in an area may become pest species, modify ecosystem structure, or represent challenges or opportunities for fisheries and recreation. Early detection of range shifts and prompt implementation of any appropriate management strategies is therefore crucial. This study investigates whether 'first sightings' of marine species outside their normal ranges could provide an early warning of impending climate-driven range shifts. We examine the relationships between first sightings and marine regions defined by patterns of local climate velocities (calculated on a 50-year timescale), while also considering the distribution of observational effort (i.e. number of sampling days recorded with biological observations in global databases). The marine trajectory regions include climate 'source' regions (areas lacking connections to warmer areas), 'corridor' regions (areas where moving isotherms converge), and 'sink' regions (areas where isotherms locally disappear). Additionally, we investigate the latitudinal band in which first sightings were recorded, and species' thermal affiliations. We found that first sightings are more likely to occur in climate sink and 'divergent' regions (areas where many rapid and diverging climate trajectories pass through) indicating a role of temperature in driving changes in marine species distributions. The majority of our fish first sightings appear to be tropical and subtropical species moving towards high latitudes, as would be expected in climate warming. Our results indicate that first sightings are likely related to longer-term climatic processes, and therefore have potential use to indicate likely climate-driven range shifts. The development of an approach to detect impending range shifts at an early stage will allow resource managers and researchers to better manage opportunities resulting from range-shifting species before they potentially colonize.


Asunto(s)
Cambio Climático , Ecosistema , Peces , Animales , Clima , Temperatura , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...