Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS Open Bio ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095329

RESUMEN

To date, most efforts to decolonise curricula have focussed on the arts and humanities, with many believing that science subjects are objective, unbiased, and unaffected by colonial legacies. However, science is shaped by both contemporary and historical culture. Science has been used to support imperialism, to extract and exploit knowledge and natural resources, and to justify racist and ableist ideologies. Colonial legacies continue to affect scientific knowledge generation and shape contemporary research priorities. In the biomedical sciences, research biases can feed into wider health inequalities. Reflection of these biases in our taught curricula risks perpetuating long-standing inequities to future generations of scientists. We examined attitudes and understanding towards decolonising and diversifying the curriculum among students and teaching staff in the biomedical sciences at the University of Bristol, UK, to discover whether our current teaching practice is perceived as inclusive. We used a mixed methods study including surveys of staff (N = 71) and students (N = 121) and focus groups. Quantitative data showed that staff and students think decolonising the curriculum is important, but this is more important to female respondents (P < 0.001). Students are less aware than staff of current efforts to decolonise the curriculum, while students from minority ethnic groups feel less represented by the curriculum than white students. Thematic analysis of qualitative data revealed three themes that are important for a decolonised curriculum in our context: rediscovery, representation and readiness. We propose that this '3Rs framework' could guide future efforts to decolonise and diversify the curriculum in the biomedical sciences and beyond.

2.
Sci Rep ; 10(1): 15323, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948786

RESUMEN

Complex polyketides of bacterial origin are biosynthesised by giant assembly-line like megaenzymes of the type 1 modular polyketide synthase (PKS) class. The trans-AT family of modular PKSs, whose biosynthetic frameworks diverge significantly from those of the archetypal cis-AT type systems represent a new paradigm in natural product enzymology. One of the most distinctive enzymatic features common to trans-AT PKSs is their ability to introduce methyl groups at positions ß to the thiol ester in the growing polyketide chain. This activity is achieved through the action of a five protein HCS cassette, comprising a ketosynthase, a 3-hydroxy-3-methylglutaryl-CoA synthase, a dehydratase, a decarboxylase and a dedicated acyl carrier protein. Here we report a molecular level description, achieved using a combination of X-ray crystallography, in vitro enzyme assays and site-directed mutagenesis, of the bacillaene synthase dehydratase/decarboxylase enzyme couple PksH/PksI, responsible for the final two steps in ß-methyl branch installation in this trans-AT PKS. Our work provides detailed mechanistic insight into this biosynthetic peculiarity and establishes a molecular framework for HCS cassette enzyme exploitation and manipulation, which has future potential value in guiding efforts in the targeted synthesis of functionally optimised 'non-natural' natural products.


Asunto(s)
Carboxiliasas/metabolismo , Hidroliasas/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Polienos/metabolismo , Sintasas Poliquetidas/genética , Conformación Proteica
3.
J Biol Chem ; 291(31): 15985-6000, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27311712

RESUMEN

Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans Complementary crystallographic and biophysical characterization of BspA reveal a novel ß-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections.


Asunto(s)
Adhesinas Bacterianas/química , Proteínas Bacterianas/química , Pared Celular/química , Proteínas de la Membrana/química , Streptococcus agalactiae/química , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Femenino , Humanos , Lactococcus lactis/química , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Relación Estructura-Actividad
4.
Structure ; 24(4): 518-527, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26973090

RESUMEN

The Sec translocon performs protein secretion and membrane protein insertion at the plasma membrane of bacteria and archaea (SecYEG/ß), and the endoplasmic reticular membrane of eukaryotes (Sec61). Despite numerous structures of the complex, the mechanism underlying translocation of pre-proteins, driven by the ATPase SecA in bacteria, remains unresolved. Here we present a series of biochemical and computational analyses exploring the consequences of signal sequence binding to SecYEG. The data demonstrate that a signal sequence-induced movement of transmembrane helix 7 unlocks the translocon and that this conformational change is communicated to the cytoplasmic faces of SecY and SecE, involved in SecA binding. Our findings progress the current understanding of the dynamic action of the translocon during the translocation initiation process. The results suggest that the converging effects of the signal sequence and SecA at the cytoplasmic face of SecYEG are decisive for the intercalation and translocation of pre-protein through the SecY channel.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Señales de Clasificación de Proteína/genética , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , Proteínas Bacterianas/química , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Estructura Secundaria de Proteína , Transporte de Proteínas , Canales de Translocación SEC/genética , Proteína SecA
5.
J Vis Exp ; (78)2013 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-24022545

RESUMEN

Random microseed matrix screening (rMMS) is a protein crystallization technique in which seed crystals are added to random screens. By increasing the likelihood that crystals will grow in the metastable zone of a protein's phase diagram, extra crystallization leads are often obtained, the quality of crystals produced may be increased, and a good supply of crystals for data collection and soaking experiments is provided. Here we describe a general method for rMMS that may be applied to either sitting drop or hanging drop vapor diffusion experiments, established either by hand or using liquid handling robotics, in 96-well or 24-well tray format.


Asunto(s)
Cristalización/métodos , Proteínas/química , Cristalización/instrumentación , Difusión , Gases/química , Robótica/métodos
6.
Biochem J ; 449(3): 695-705, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23126322

RESUMEN

The motor ATPase SecA drives protein secretion through the bacterial Sec complex. The PPXD (pre-protein cross-linking domain) of the enzyme has been observed in different positions, effectively opening and closing a clamp for the polypeptide substrate. We set out to explore the implicated dynamic role of the PPXD in protein translocation by examining the effects of its immobilization, either in the position occupied in SecA alone with the clamp held open or when in complex with SecYEG with the clamp closed. We show that the conformational change from the former to the latter is necessary for high-affinity association with SecYEG and a corresponding activation of ATPase activity, presumably due to the PPXD contacting the NBDs (nucleotide-binding domains). In either state, the immobilization prevents pre-protein transport. However, when the PPXD was attached to an alternative position in the associated SecYEG complex, with the clamp closed, the transport capability was preserved. Therefore large-scale conformational changes of this domain are required for the initiation process, but not for translocation itself. The results allow us to refine a model for protein translocation, in which the mobility of the PPXD facilitates the transfer of pre-protein from SecA to SecYEG.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Cardiolipinas/metabolismo , Activación Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cinética , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Mutagénesis , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canales de Translocación SEC , Proteína SecA
7.
J Cell Biol ; 199(6): 919-29, 2012 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-23209305

RESUMEN

The bacterial ATPase SecA and protein channel complex SecYEG form the core of an essential protein translocation machinery. The nature of the conformational changes induced by each stage of the hydrolytic cycle of ATP and how they are coupled to protein translocation are not well understood. The structure of the SecA-SecYEG complex revealed a 2-helix-finger (2HF) of SecA in an ideal position to contact the substrate protein and push it through the membrane. Surprisingly, immobilization of this finger at the edge of the protein channel had no effect on translocation, whereas its imposition inside the channel blocked transport. This analysis resolves the stoichiometry of the active complex, demonstrating that after the initiation process translocation requires only one copy each of SecA and SecYEG. The results also have important implications on the mechanism of energy transduction and the power stroke driving transport. Evidently, the 2HF is not a highly mobile transducing element of polypeptide translocation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Simulación por Computador , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Conformación Proteica , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA , Thermotoga maritima/enzimología
8.
Cell Rep ; 1(1): 21-8, 2012 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-22576621

RESUMEN

The Sec complex forms the core of a conserved machinery coordinating the passage of proteins across or into biological membranes. The bacterial complex SecYEG interacts with the ATPase SecA or translating ribosomes to translocate secretory and membrane proteins accordingly. A truncated preprotein competes with the physiological full-length substrate and primes the protein-channel complex for transport. We have employed electron cryomicroscopy of two-dimensional crystals to determine the structure of the complex unlocked by the preprotein. Its visualization in the native environment of the membrane preserves the active arrangement of SecYEG dimers, in which only one of the two channels is occupied by the polypeptide substrate. The signal sequence could be identified along with the corresponding conformational changes in SecY, including relocation of transmembrane segments 2b and 7 as well as the plug, which presumably then promote channel opening. Therefore, we propose that the structure describes the translocon unlocked by preprotein and poised for protein translocation.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Precursores de Proteínas/metabolismo , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Proteínas de Escherichia coli/ultraestructura , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína , Señales de Clasificación de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Activación Transcripcional/genética
9.
J Biol Chem ; 286(6): 4659-69, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21056980

RESUMEN

Protein secretion in bacteria is driven through the ubiquitous SecYEG complex by the ATPase SecA. The structure of SecYEG alone or as a complex with SecA in detergent reveal a monomeric heterotrimer enclosing a central protein channel, yet in membranes it is dimeric. We have addressed the functional significance of the oligomeric status of SecYEG in protein translocation using single molecule and ensemble methods. The results show that while monomers are sufficient for the SecA- and ATP-dependent association of SecYEG with pre-protein, active transport requires SecYEG dimers arranged in the back-to-back conformation. Molecular modeling of this dimeric structure, in conjunction with the new functional data, provides a rationale for the presence of both active and passive copies of SecYEG in the functional translocon.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Multimerización de Proteína/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Membrana Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Transporte de Proteínas/fisiología , Canales de Translocación SEC , Proteína SecA
10.
Proc Natl Acad Sci U S A ; 107(22): 10044-9, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20479269

RESUMEN

Cardiolipin is an ever-present component of the energy-conserving inner membranes of bacteria and mitochondria. Its modulation of the structure and dynamism of the bilayer impacts on the activity of their resident proteins, as a number of studies have shown. Here we analyze the consequences cardiolipin has on the conformation, activity, and localization of the protein translocation machinery. Cardiolipin tightly associates with the SecYEG protein channel complex, whereupon it stabilizes the dimer, creates a high-affinity binding surface for the SecA ATPase, and stimulates ATP hydrolysis. In addition to the effects on the structure and function, the subcellular distribution of the complex is modified by the cardiolipin content of the membrane. Together, the results provide rare and comprehensive insights into the action of a phospholipid on an essential transport complex, which appears to be relevant to a broad range of energy-dependent reactions occurring at membranes.


Asunto(s)
Cardiolipinas/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Transporte de Proteínas/efectos de los fármacos , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Apraxia Ideomotora , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cardiolipinas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Colorantes Fluorescentes , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Complejos Multiproteicos , Estabilidad Proteica/efectos de los fármacos , Canales de Translocación SEC , Proteína SecA
11.
Proc Natl Acad Sci U S A ; 106(13): 5111-6, 2009 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-19273842

RESUMEN

The motor protein SecA drives the transport of polypeptides through the ubiquitous protein channel SecYEG. Changes in protein-nucleotide binding energy during the hydrolytic cycle of SecA must be harnessed to drive large conformational changes resulting in channel opening and vectorial substrate polypeptide transport. Here, we elucidate the ATP hydrolysis cycle of SecA from Escherichia coli by transient and steady-state methods. The basal ATPase activity of SecA is very slow with the release of ADP being some 600-fold slower than hydrolysis. Upon binding to SecYEG the release of ADP is stimulated but remains rate-limiting. ADP release is fastest in the fully coupled system when a substrate protein is being translocated; in this case hydrolysis and ADP release occur at approximately the same rate. The data imply that ADP dissociation from SecA is accompanied by a structural rearrangement that is strongly coupled to the protein interface and protein translocation through SecYEG.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Transferencia de Energía , Proteínas de Escherichia coli/metabolismo , Adenosina Difosfato/metabolismo , Proteínas Bacterianas/metabolismo , Hidrólisis , Cinética , Proteínas de Transporte de Membrana/metabolismo , Conformación Proteica , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA
12.
FEBS Lett ; 583(1): 207-12, 2009 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19084013

RESUMEN

A short helix in the centre of the SecY subunit serves as a 'plug' blocking the protein channel. This site must be vacated if the channel is to open and accommodate translocating protein. We have synthesised a peptide mimic of this plug, and show that it binds to E. coli SecYEG, identifying a distinct and peripheral binding site. We propose that during active translocation the plug moves to this second discrete site and chart its position. Deletion of the plug in SecY increases the stoichiometry of the peptide-SecYEG interaction by also exposing the location it occupies in the channel. Binding of the plug peptide to the channel is unaffected by SecA.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Periplasma/metabolismo , Sitios de Unión , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Oligopéptidos/síntesis química , Oligopéptidos/química , Estructura Secundaria de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Eliminación de Secuencia
13.
J Mol Biol ; 374(4): 965-76, 2007 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17964601

RESUMEN

In bacteria, the SecYEG protein translocation complex employs the cytosolic ATPase SecA to couple the energy of ATP binding and hydrolysis to the mechanical force required to push polypeptides through the membrane. The molecular basis of this energy transducing reaction is not well understood. A peptide-binding array has been employed to identify sites on SecYEG that interact with SecA. These results along with fluorescence spectroscopy have been exploited to characterise a long-distance conformational change that connects the nucleotide-binding fold of SecA to the transmembrane polypeptide channel in SecY. These movements are driven by binding of non-hydrolysable ATP analogues to a monomer of SecA in association with the SecYEG complex. We also determine that interaction with SecYEG simultaneously decreases the affinity of SecA for ATP and inhibitory magnesium, favouring a previously identified active state of the ATPase. Mutants of SecA capable of binding but not hydrolysing ATP do not elicit this conformationally active state, implicating residues of the Walker B motif in the early chain of events that couple ATP binding to the mobility of the channel.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Sitios de Unión , Cationes Bivalentes , Dimerización , Proteínas de Escherichia coli/genética , Magnesio/química , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/genética , Mutación , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA
14.
J Biol Chem ; 282(24): 17424-32, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17416585

RESUMEN

In bacteria, the SecA protein associates with a ubiquitous protein channel SecYEG where it drives the post-translational secretion of pre-proteins across the plasma membrane. The high-resolution structures of both proteins have been determined in their resting states; however, the mechanism that couples ATP hydrolysis to active transport of substrate proteins through the membrane is not well understood. An analysis of the steady-state ATPase activity of the enzyme reveals that there is an allosteric binding site for magnesium distinct from that associated with hydrolysis of ATP. We have demonstrated that this regulation involves a large conformational change to the SecA dimer, which exerts a strong influence on the turnover and affinity for ATP, as well as the affinity for ADP. The strong inhibitory influence of magnesium on the ATPase activity can be countered by cardiolipin and conditions that promote protein translocation.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Magnesio/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Estructura Cuaternaria de Proteína , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Sitios de Unión , Cardiolipinas/metabolismo , Dimerización , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/genética , Unión Proteica , Precursores de Proteínas/metabolismo , Canales de Translocación SEC , Proteína SecA
15.
EMBO Rep ; 7(11): 1099-103, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17077865

RESUMEN

Proteins synthesized in the cytosol either remain there or are localized to a specific membrane and subsequently translocated to another cellular compartment. These extracytosolic proteins have to cross, or be inserted into, a phospholipid bilayer-a process governed by membrane-bound protein transporters designed to recognize and receive appropriate polypeptides and thread them through the membrane. One such translocation complex, SecY/Sec61, is found in every cell, in either the plasma membrane of bacteria and archaea or the endoplasmic reticulum membrane of eukaryotes. Recent structural findings, combined with previous genetic and biochemical studies, have helped to describe how the passage of proteins through the membrane might occur, but several points of uncertainty remain.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Estructura Terciaria de Proteína , Transporte de Proteínas , Canales de Translocación SEC
16.
Philos Trans A Math Phys Eng Sci ; 360(1796): 1327-43, 2002 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12804252

RESUMEN

Recent major flooding in the UK has raised concern that climate change is causing increases in flood frequency and flood magnitude. This paper considers whether UK flood data provide evidence of increasing trends in fluvial floods. The analysis examines both local and national flood series and investigates the effect of climate variability on trend detection. The results suggest that there have been trends towards more protracted high flows over the last 30-50 years, but that this could be accounted for as part of climatic variation rather than climate change. There is no statistical evidence of a long-term trend in flooding over the last 80-120 years. Thus, although climate change could be influencing floods, direct analysis of flood records does not yet provide proof.


Asunto(s)
Clima , Desastres , Modelos Estadísticos , Estadística como Asunto , Simulación por Computador , Ecosistema , Monitoreo del Ambiente/métodos , Análisis de Regresión , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estadísticas no Paramétricas , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA