Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 774098, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899803

RESUMEN

Asparagaceae's large embryo sacs display a central cell nucleus polarized toward the chalaza, which means the sperm nucleus that fuses with it during double fertilization migrates an atypical long distance before karyogamy. Because of the size and inverted polarity of the central cell in Asparagaceae, we hypothesize that the second fertilization process is supported by an F-actin machinery different from the short-range F-actin structures observed in Arabidopsis and other plant models. Here, we analyzed the F-actin dynamics of Agave inaequidens, a classical Asparagaceae, before, during, and after the central cell fertilization. Several parallel F-actin cables, spanning from the central cell nucleus to the micropylar pole, and enclosing the vacuole, were observed. As fertilization progressed, a thick F-actin mega-cable traversing the vacuole appeared, connecting the central cell nucleus with the micropylar pole near the egg cell. This mega-cable wrapped the sperm nucleus in transit to fuse with the central cell nucleus. Once karyogamy finished, and the endosperm started to develop, the mega-cable disassembled, but new F-actin structures formed. These observations suggest that Asparagaceae, and probably other plant species with similar embryo sacs, evolved an F-actin machinery specifically adapted to support the migration of the fertilizing sperm nucleus within a large-sized and polarity-inverted central cell.

2.
Front Plant Sci ; 11: 384, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32328076

RESUMEN

During plant sexual reproduction, F-actin takes part in the elongation of the pollen tube and the movement of sperm cells along with it. Moreover, F-actin is involved in the transport of sperm cells throughout the embryo sac when double fertilization occurs. Different techniques for analysis of F-actin in plant cells have been developed: from classical actin-immunolocalization in fixed tissues to genetically tagged actin with fluorescent proteins for live imaging of cells. Despite the implementation of live cell imaging tools, fixed plant tissue methods for cytoskeletal studies remain an essential tool for genetically intractable systems. Also, most of the work on live imaging of the cytoskeleton has been conducted on cells located on the plant's surface, such as epidermal cells, trichomes, and root hairs. In cells situated in the plant's interior, especially those from plant species with thicker organ systems, it is necessary to utilize conventional sectioning and permeabilization methods to allow the label access to the cytoskeleton. Studies about the role of F-actin cytoskeleton during double fertilization in plants with crassinucellate ovules (e.g., Agave, Yucca, Polianthes, Prochnyantes, and Manfreda) remain scarce due to the difficulties to access the female gametophyte. Here, we have developed a straightforward method for analysis of F-actin in the female gametophyte of different Agavoideae sub-family species. The procedure includes the fixation of whole ovules with formaldehyde, followed by membrane permeabilization with cold acetone, a prolonged staining step with rhodamine-phalloidin, and Hoechst 33342 as a counterstain and two final steps of dehydration of samples in increasing-concentration series of cold isopropanol and clarification of tissues with methyl salicylate. This technique allows the analysis of a large number of samples in a short period, cell positioning relative to neighbor cells is maintained, and, with the help of a confocal microscope, reconstruction of a single 3D image of F-actin structures into the embryo sac can be obtained.

3.
Appl Microbiol Biotechnol ; 103(17): 6949-6972, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31359105

RESUMEN

Protein display approaches have been useful to endow the cell surface of yeasts with new catalytic activities so that they can act as enhanced whole-cell biocatalysts. Despite their biotechnological potential, protein display technologies remain poorly developed for filamentous fungi. The lignocellulolytic character of some of them coupled to the cell surface biosynthesis of valuable molecules by a single or a cascade of several displayed enzymes is an appealing prospect. Cell surface protein display consists in the co-translational fusion of a functional protein (passenger) to an anchor one, usually a cell-wall-resident protein. The abundance, spacing, and local environment of the displayed enzymes-determined by the relationship of the anchor protein with the structure and dynamics of the engineered cell wall-are factors that influence the performance of display-based biocatalysts. The development of protein display strategies in filamentous fungi could be based on the field advances in yeasts; however, the unique composition, structure, and biology of filamentous fungi cell walls require the customization of the approach to those microorganisms. In this prospective review, the cellular bases, the design principles, and the available tools to foster the development of cell surface protein display technologies in filamentous fungi are discussed.


Asunto(s)
Técnicas de Visualización de Superficie Celular , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Proteínas de la Membrana/metabolismo , Biotecnología , Pared Celular/química , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Hongos/genética , Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Proteínas de la Membrana/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
4.
Protoplasma ; 256(4): 1079-1092, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30923921

RESUMEN

Calcium is a secondary messenger that regulates and coordinates the cellular responses to environmental cues. Despite calcium being a key player during fertilization in plants, little is known about its role during the development of the endosperm. For this reason, the distribution, abundance, and dynamics of cytosolic calcium during the first stages of endosperm development of Agave tequilana and Agave salmiana were analyzed. Cytosolic calcium and actin filaments detected in the embryo sacs of Agave tequilana and A. salmiana revealed that they play an important role during the division and nuclear migration of the endosperm. After fertilization, a relatively high concentration of cytosolic calcium was located in the primary nucleus of the endosperm, as well as around migrating nuclei during the development of the endosperm. Cytosolic calcium participates actively during the first mitosis of the endosperm mother cell and interacts with the actin filaments that generate the motor forces during the migration of the nuclei through the large cytoplasm of the central cell.


Asunto(s)
Agave/crecimiento & desarrollo , Calcio/metabolismo , Citosol/metabolismo , Endospermo/crecimiento & desarrollo , Citoesqueleto de Actina/metabolismo , Agave/citología , Agave/metabolismo , Endospermo/citología , Endospermo/metabolismo , Mitosis , Células Vegetales/metabolismo
5.
Methods Mol Biol ; 1815: 151-159, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29981118

RESUMEN

The genus Agave originates from the American continent and grows in arid and semiarid places, being México the center of origin. Many species of the genus are a source of diverse products for human needs, such as food, medicines, fibers, and beverages, and a good source of biomass for the production of biofuels, among many others. These plants are gaining importance as climate change becomes more evident as heat is reaching temperatures above 40 °C worldwide and rains are scarce. Many species of the genus grow in places where other plant species do not survive under severe field conditions, due to their CAM pathway for fixing CO2 where gas exchange occurs at night when stomata are open, allowing them to avoid excess loss of water. Most of the important species and varieties are usually propagated by offshoots that develop from rhizomes around the mother plant and by bulbils that develop up in the inflorescence, which are produced by the plant mostly when there is a failure in the production of seeds.Areas for commercial plantations are growing worldwide and therefore in the need of big amounts of healthy and good quality plantlets. Although many Agave species produce seeds, it takes longer for the plants to reach appropriate maturity and size for diverse purposes. Micropropagation techniques for the genus Agave offer the opportunity to produce relatively high amounts of plants year around in relatively small spaces in a laboratory. Here, a protocol for micropropagation that has proven good for several Agave species (including species from both subgenera) is presented in detail with two different kinds of explants to initiate the process: rescued zygotic embryos and small offshoots that grow around a mother plant.


Asunto(s)
Agave/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos/métodos , Agave/embriología , Medios de Cultivo/química , Brotes de la Planta/crecimiento & desarrollo , Semillas/crecimiento & desarrollo
6.
Methods Mol Biol ; 1815: 289-300, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29981130

RESUMEN

Species of the genus Agave are distributed originally in the tropical and subtropical areas of the American continent with about 200 taxa and 136 species, and its center of origin is probably limited to México. These kind of plants usually grow and live in extreme environmental conditions such as heat and drought where their CAM pathway for fixing CO2 allow them to survive in conditions where other plants cannot survive. Although this kind of plants resist harsh environmental conditions, climate change is imposing stronger kinds of stress that diminish their productive potential and in some cases are cause of death. Because of this, genetic improvement becomes a need of fundamental importance in this kind of species. Despite their economic importance, Agave species have received scarce attention with regard to its genetic improvement, probably due to their unique botanical features such as plant architecture, spines, long life span, and monocarpy, among others, which make hybridization a difficult task for the intra- and interspecific gene transfer and creation of genetic variability among many other breeding techniques.The protocol here presented is a combination of a novel hybridization technique and biotechnological tools, and allows the use of several procedures for the genetic improvement of agaves such as pollen selection, clonal selection, and somatic cell selection, among others, since the rescued embryos can be used for micropropagation, for phenotype/genotype selection or the production of cell lineages for diverse genetic improvement purposes.


Asunto(s)
Agave/embriología , Fitomejoramiento/métodos , Técnicas de Embriogénesis Somática de Plantas/métodos , Polinización/fisiología , Hibridación Genética , Polen/fisiología , Preservación Biológica
7.
Springerplus ; 1: 17, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23961348

RESUMEN

A cytological analysis of the microsporogenesis was carried out in the Agave tequilana and A. angustifolia species. Several abnormalities such as chromosomal bridges, lagging chromosomes, micronuclei, monads, dyads and triads were found. The morphological analysis of the pollen, together with the above-mentioned 2n microspores, allowed us to confirm the presence of 2n pollen as well as its frequency. In both A. tequilana and A. angustifolia two different mechanisms were observed: the first mechanism, a failure in the cytokinesis in meiosis II caused the formation of dyads with two 2n cells and triads containing two n cells and one 2n cell; the second mechanism, involves an abnormal spindle, which caused the formation of triads with two n cells and one 2n cell. Likewise, the presence of monads was detected in both species, these, might be caused by a failure of the cytokinesis in both meiotic divisions. This is the first report about the presence of a Second Division Restitution mechanism (SDR) which causes the formation of 2n pollen in the genus Agave. The genetic implications of the presence of 2n pollen in the genus Agave are discussed.

8.
Appl Opt ; 41(13): 2541-5, 2002 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-12009165

RESUMEN

Greenhouse-grown plants of Agave tequilana Weber var. azul were inoculated with Erwinia carotovora, the causal agent of stem soft rot. We investigated the laser-induced fluorescence (LIF) of agave plants to determine whether LIF can be used as a noninvasive sensing tool for pathological studies. The LIF technique was also investigated as a means of detecting the effect of the polyamine biosynthesis inhibitor beta-hydroxyethylhydrazine as a bactericide against the pathogenic bacterium Erwinia carotovora. A He-Ne laser at 632.8 nm was used as the excitation source, and in vivo fluorescence emission spectra were recorded in the 660-790-range. Fluorescence maxima were at 690 and 740 nm. The infected plants that were untreated with the bactericide showed a definite increase in fluorescence intensity at both maxima within the first three days after infection. Beginning on the fifth day, a steady decrease in fluorescence intensity was observed, with a greater effect at 740 than at 690 nm. After 30 days there was no fluorescence. The infected plants that had been treated with the bactericide showed no significant change in fluorescence compared with that of the uninfected plants. The ratio of fluorescence intensities was determined to be F 690 nm/F 740 nm for all treatments. These studies indicate that LIF measurements of agave plants may be used for the early detection of certain types of disease and for determining the effect of a bactericide on bacteria. The results also showed that fluorescence intensity ratios can be used as a reliable indicator of the progress of disease.


Asunto(s)
Agave/microbiología , Bacterias/aislamiento & purificación , Rayos Láser , Enfermedades de las Plantas , Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA