Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; 10(1)2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670614

RESUMEN

Homologous recombination (HR) enables the exchange of genetic material between and within species. Recent studies suggest that this process plays a major role in the microevolution of microbial genomes, contributing to core genome homogenization and to the maintenance of cohesive population structures. However, we still have a very poor understanding of the possible adaptive roles of intraspecific HR and of the factors that determine its differential impact across clades and lifestyles. Here we used a unified methodological framework to assess HR in 338 complete genomes from 54 phylogenetically diverse and representative prokaryotic species, encompassing different lifestyles and a broad phylogenetic distribution. Our results indicate that lifestyle and presence of restriction-modification (RM) machineries are among the main factors shaping HR patterns, with symbionts and intracellular pathogens having the lowest HR levels. Similarly, the size of exchanged genomic fragments correlated with the presence of RM and competence machineries. Finally, genes exchanged by HR showed functional enrichments which could be related to adaptations to different environments and ecological strategies. Taken together, our results clarify the factors underlying HR impact and suggest important adaptive roles of genes exchanged through this mechanism. Our results also revealed that the extent of genetic exchange correlated with lifestyle and some genomic features. Moreover, the genes in exchanged regions were enriched for functions that reflected specific adaptations, supporting identification of HR as one of the main evolutionary mechanisms shaping prokaryotic core genomes.IMPORTANCE Microbial populations exchange genetic material through a process called homologous recombination. Although this process has been studied in particular organisms, we lack an understanding of its differential impact over the genome and across microbes with different life-styles. We used a common analytical framework to assess this process in a representative set of microorganisms. Our results uncovered important trends. First, microbes with different lifestyles are differentially impacted, with endosymbionts and obligate pathogens being those less prone to undergo this process. Second, certain genetic elements such as restriction-modification systems seem to be associated with higher rates of recombination. Most importantly, recombined genomes show the footprints of natural selection in which recombined regions preferentially contain genes that can be related to specific ecological adaptations. Taken together, our results clarify the relative contributions of factors modulating homologous recombination and show evidence for a clear a role of this process in shaping microbial genomes and driving ecological adaptations.


Asunto(s)
Adaptación Biológica , Archaea/genética , Bacterias/genética , Evolución Molecular , Genoma Arqueal , Genoma Bacteriano , Recombinación Homóloga , Biología Computacional
2.
Proc Natl Acad Sci U S A ; 111(23): E2423-30, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912181

RESUMEN

To modulate the expression of genes involved in nitrogen assimilation, the cyanobacterial PII-interacting protein X (PipX) interacts with the global transcriptional regulator NtcA and the signal transduction protein PII, a protein found in all three domains of life as an integrator of signals of the nitrogen and carbon balance. PipX can form alternate complexes with NtcA and PII, and these interactions are stimulated and inhibited, respectively, by 2-oxoglutarate, providing a mechanistic link between PII signaling and NtcA-regulated gene expression. Here, we demonstrate that PipX is involved in a much wider interaction network. The effect of pipX alleles on transcript levels was studied by RNA sequencing of S. elongatus strains grown in the presence of either nitrate or ammonium, followed by multivariate analyses of relevant mutant/control comparisons. As a result of this process, 222 genes were classified into six coherent groups of differentially regulated genes, two of which, containing either NtcA-activated or NtcA-repressed genes, provided further insights into the function of NtcA-PipX complexes. The remaining four groups suggest the involvement of PipX in at least three NtcA-independent regulatory pathways. Our results pave the way to uncover new regulatory interactions and mechanisms in the control of gene expression in cyanobacteria.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Synechococcus/genética , Factores de Transcripción/genética , Compuestos de Amonio/metabolismo , Compuestos de Amonio/farmacología , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica/clasificación , Ácidos Cetoglutáricos/farmacología , Modelos Genéticos , Datos de Secuencia Molecular , Análisis Multivariante , Mutación , Nitratos/metabolismo , Nitratos/farmacología , Nitrógeno/metabolismo , Nitrógeno/farmacología , Motivos de Nucleótidos/genética , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Homología de Secuencia de Ácido Nucleico , Synechococcus/metabolismo , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
3.
FEMS Microbiol Lett ; 254(1): 41-7, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16451177

RESUMEN

Cyanobacteria respond to nutrient stress conditions by degrading their light-harvesting complexes for photosynthesis, a process regulated in Synechococcus sp. PCC 7942 by the sensor histidine kinase non-bleaching sensor (NblS). In yeast two-hybrid screenings for proteins interacting with NblS we have identified a novel type of protein, named SipA for NblS interacting protein A. Specific binding between NblS and SipA is observed with both yeast and bacterial two-hybrid systems. Additional yeast two-hybrid screenings with SipA as bait further confirmed the specificity of the interaction and allowed us to map their determinants to the ATP-binding domain of NblS. Strong conservation and coevolution of both NblS and SipA in cyanobacteria further suggests the importance of SipA in the context of the NblS signal transduction network.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Respuesta al Choque Térmico , Proteínas Quinasas/metabolismo , Transducción de Señal , Synechococcus/fisiología , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Histidina Quinasa , Datos de Secuencia Molecular , Proteínas Quinasas/química , Synechococcus/genética , Synechococcus/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA