Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Intervalo de año de publicación
1.
Clinics (Sao Paulo) ; 78: 100242, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37480642

RESUMEN

BACKGROUND: The 6-OHDA nigro-striatal lesion model has already been related to disorders in the excitability and synchronicity of neural networks and variation in the expression of transmembrane proteins that control intra and extracellular ionic concentrations, such as cation-chloride cotransporters (NKCC1 and KCC2) and Na+/K+-ATPase and, also, to the glial proliferation after injury. All these non-synaptic mechanisms have already been related to neuronal injury and hyper-synchronism processes. OBJECTIVE: The main objective of this study is to verify whether mechanisms not directly related to synaptic neurotransmission could be involved in the modulation of nigrostriatal pathways. METHODS: Male Wistar rats, 3 months old, were submitted to a unilateral injection of 24 µg of 6-OHDA, in the striatum (n = 8). The animals in the Control group (n = 8) were submitted to the same protocol, with the replacement of 6-OHDA by 0.9% saline. The analysis by optical densitometry was performed to quantify the immunoreactivity intensity of GFAP, NKCC1, KCC2, Na+/K+-ATPase, TH and Cx36. RESULTS: The 6-OHDA induced lesions in the striatum, were not followed by changes in the expression cation-chloride cotransporters and Na+/K+-ATPase, but with astrocytic reactivity in the lesioned and adjacent regions of the nigrostriatal. Moreover, the dopaminergic degeneration caused by 6-OHDA is followed by changes in the expression of connexin-36. CONCLUSIONS: The use of the GJ blockers directly along the nigrostriatal pathways to control PD motor symptoms is conjectured. Electrophysiology of the striatum and the substantia nigra, to verify changes in neuronal synchronism, comparing brain slices of control animals and experimental models of PD, is needed.


Asunto(s)
Enfermedad de Parkinson , Simportadores , Ratas , Animales , Masculino , Oxidopamina , Ratas Wistar , Cloruros , Modelos Animales de Enfermedad , Adenosina Trifosfatasas
2.
Clinics (Sao Paulo) ; 78: 100159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36774732

RESUMEN

OBJECTIVE: Amygdala has been demonstrated as one of the brain sites involved in the control of cardiorespiratory functioning. The structural and physiological alterations induced by epileptic activity are also present in the amygdala and reflect functional changes that may be directly associated with a sudden unexpected death. Seizures are always associated with neuronal damage and changes in the expression of cation-chloride cotransporters and Na/K pumps. In this study, the authors aimed to investigate if these changes are present in the amygdala after induction of status epilepticus with pilocarpine, which may be directly correlated with Sudden Unexpected Death in Epilepsy (SUDEP). METHODS: Pilocarpine-treated wistar rats 60 days after Status Epilepticus (SE) were compared with control rats. Amygdala nuclei of brain slices immunostained for NKCC1, KCC2 and α1-Na+/K+-ATPase, were quantified by optical densitometry. RESULTS: The amygdaloid complex of the animals submitted to SE had no significant difference in the NKCC1 immunoreactivity, but KCC2 immunoreactivity reduced drastically in the peri-somatic sites and in the dendritic-like processes. The α1-Na+/K+-ATPase peri-somatic immunoreactivity was intense in the rats submitted to pilocarpine SE when compared with control rats. The pilocarpine SE also promoted intense GFAP staining, specifically in the basolateral and baso-medial nuclei with astrogliosis and cellular debris deposition. INTERPRETATION: The findings revealed that SE induces lesion changes in the expression of KCC2 and α1-Na+/K+-ATPase meaning intense change in the chloride regulation in the amygdaloid complex. These changes may contribute to cardiorespiratory dysfunction leading to SUDEP.


Asunto(s)
Amígdala del Cerebelo , Estado Epiléptico , Muerte Súbita e Inesperada en la Epilepsia , Animales , Ratas , Adenosina Trifosfatasas/metabolismo , Amígdala del Cerebelo/patología , Cloruros/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Homeostasis , Pilocarpina/efectos adversos , Ratas Wistar , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Muerte Súbita e Inesperada en la Epilepsia/patología , Simportadores/metabolismo
4.
Clinics ; Clinics;78: 100242, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1506005

RESUMEN

Abstract Background The 6-OHDA nigro-striatal lesion model has already been related to disorders in the excitability and synchronicity of neural networks and variation in the expression of transmembrane proteins that control intra and extracellular ionic concentrations, such as cation-chloride cotransporters (NKCC1 and KCC2) and Na+/K+-ATPase and, also, to the glial proliferation after injury. All these non-synaptic mechanisms have already been related to neuronal injury and hyper-synchronism processes. Objective The main objective of this study is to verify whether mechanisms not directly related to synaptic neurotransmission could be involved in the modulation of nigrostriatal pathways. Methods Male Wistar rats, 3 months old, were submitted to a unilateral injection of 24 µg of 6-OHDA, in the striatum (n= 8). The animals in the Control group (n= 8) were submitted to the same protocol, with the replacement of 6-OHDA by 0.9% saline. The analysis by optical densitometry was performed to quantify the immunoreactivity intensity of GFAP, NKCC1, KCC2, Na+/K+-ATPase, TH and Cx36. Results The 6-OHDA induced lesions in the striatum, were not followed by changes in the expression cation-chloride cotransporters and Na+/K+-ATPase, but with astrocytic reactivity in the lesioned and adjacent regions of the nigrostriatal. Moreover, the dopaminergic degeneration caused by 6-OHDA is followed by changes in the expression of connexin-36. Conclusions The use of the GJ blockers directly along the nigrostriatal pathways to control PD motor symptoms is conjectured. Electrophysiology of the striatum and the substantia nigra, to verify changes in neuronal synchronism, comparing brain slices of control animals and experimental models of PD, is needed.

6.
Clinics ; Clinics;78: 100159, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1421258

RESUMEN

Objective: Amygdala has been demonstrated as one of the brain sites involved in the control of cardiorespiratory functioning. The structural and physiological alterations induced by epileptic activity are also present in the amygdala and reflect functional changes that may be directly associated with a sudden unexpected death. Seizures are always associated with neuronal damage and changes in the expression of cation-chloride cotransporters and Na/K pumps. In this study, the authors aimed to investigate if these changes are present in the amygdala after induction of status epilepticus with pilocarpine, which may be directly correlated with Sudden Unexpected Death in Epilepsy (SUDEP). Methods: Pilocarpine-treated wistar rats 60 days after Status Epilepticus (SE) were compared with control rats. Amygdala nuclei of brain slices immunostained for NKCC1, KCC2 and α1-Na+/K+-ATPase, were quantified by optical densitometry. Results: The amygdaloid complex of the animals submitted to SE had no significant difference in the NKCC1 immunoreactivity, but KCC2 immunoreactivity reduced drastically in the peri-somatic sites and in the dendritic-like processes. The α1-Na+/K+-ATPase peri-somatic immunoreactivity was intense in the rats submitted to pilocarpine SE when compared with control rats. The pilocarpine SE also promoted intense GFAP staining, specifically in the basolateral and baso-medial nuclei with astrogliosis and cellular debris deposition. Interpretation: The findings revealed that SE induces lesion changes in the expression of KCC2 and α1-Na + /K + -ATPase meaning intense change in the chloride regulation in the amygdaloid complex. These changes may contribute to cardiorespiratory dysfunction leading to SUDEP.

8.
R Soc Open Sci ; 5(3): 172155, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29657808

RESUMEN

The sodium-potassium pump (Na+/K+ pump) is crucial for cell physiology. Despite great advances in the understanding of this ionic pumping system, its mechanism is not completely understood. We propose the use of a statistical model checker to investigate palytoxin (PTX)-induced Na+/K+ pump channels. We modelled a system of reactions representing transitions between the conformational substates of the channel with parameters, concentrations of the substates and reaction rates extracted from simulations reported in the literature, based on electrophysiological recordings in a whole-cell configuration. The model was implemented using the UPPAAL-SMC platform. Comparing simulations and probabilistic queries from stochastic system semantics with experimental data, it was possible to propose additional reactions to reproduce the single-channel dynamic. The probabilistic analyses and simulations suggest that the PTX-induced Na+/K+ pump channel functions as a diprotomeric complex in which protein-protein interactions increase the affinity of the Na+/K+ pump for PTX.

9.
Front Neurosci ; 11: 98, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28298884

RESUMEN

Neurogenesis impairment is associated with the chronic phase of the epilepsy in humans and also observed in animal models. Recent studies with animal models have shown that physical exercise is capable of improving neurogenesis in adult subjects, alleviating cognitive impairment and depression. Here, we show that there is a reduction in the generation of newborn granule cells in the dentate gyrus of adult rats subjected to a chronic model of epilepsy during the postnatal period of brain development. We also show that the physical exercise was capable to restore the number of newborn granule cells in this animals to the level observed in the control group. Notably, a larger number of newborn granule cells exhibiting morphological characteristics indicative of correct targeting into the hippocampal circuitry and the absence of basal dendrite projections was also observed in the epileptic animals subjected to physical exercise compared to the epileptic animals. The results described here could represent a positive interference of the physical exercise on the neurogenesis process in subjects with chronic epilepsy. The results may also help to reinterpret the benefits of the physical exercise in alleviating symptoms of depression and cognitive dysfunction.

10.
Neuroscience ; 340: 530-541, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27871891

RESUMEN

Nonsynaptic mechanism changes, particularly the enhancement of NKCC1 expression in the dentate gyrus (DG) after 4weeks of ethanol consumption, motivate the present work, in which rats were submitted to a period of chronic consumption (12weeks). Four groups of six animals (6-week-old male Wistar rats) were formed, including the control (C), ethanol 1 (E1), ethanol 2 (E2) and ethanol 3 (E3) groups. The rats in the E1, E2 and E3 groups were treated daily with a 30% v/v solution of ethanol, administered via oral gavage (1.0, 2.0 and 3.0g/kg, respectively). Nonsynaptic epileptiform activities (NEA) were induced by means of the zero-Ca2+ and high-K+ model using hippocampal slices and were recorded in the DG. The presence of NKCC1, KCC2, α1-Na+/K+-ATPase and GFAP immunoreactivity was analyzed. The results demonstrate that alcohol consumption changes NEA, and these changes are more prominent at the lower dosage. An increase in the DC shifts associated with epileptiform discharges was present with the low dose. This increase was correlated with the increment of NKCC1 expression. Confocal microscopy images indicate the NKCC1 increase was pronounced in the initial axonal segment of granule cells. The blockage of these cotransporters during NEA induction with bumetanide suppressed the DC shift increase and diminished all parameters of NEA that were quantified for all groups treated with ethanol. Therefore, the increase in NKCC1 expression and the effective activity of this cotransporter, which were observed in the treated groups, suggest that drugs that act for block NKCC1 represent promising strategies for diminishing the effects of alcohol damage on the brain.


Asunto(s)
Trastornos Relacionados con Alcohol/metabolismo , Epilepsia/metabolismo , Hipocampo/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/metabolismo , Trastornos Relacionados con Alcohol/complicaciones , Trastornos Relacionados con Alcohol/patología , Animales , Bumetanida/farmacología , Depresores del Sistema Nervioso Central/toxicidad , Relación Dosis-Respuesta a Droga , Epilepsia/etiología , Epilepsia/patología , Etanol/toxicidad , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Ratas Wistar , Receptores de GABA-A/metabolismo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Técnicas de Cultivo de Tejidos , Cotransportadores de K Cl
11.
Epilepsy Behav ; 61: 168-173, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27371881

RESUMEN

Adenosine is an endogenous anticonvulsant that activates pre- and postsynaptic adenosine A1 receptors. A1 receptor agonists increase the latency for the development of seizures and status epilepticus following pilocarpine administration. Although hippocampal adenosine is increased in the chronic phase of the pilocarpine model, it is not known whether the modulation of A1 receptors may influence the frequency of spontaneous recurrent seizures (SRS). Here, we tested the hypothesis that the A1 receptor agonist RPia ([R]-N-phenylisopropyladenosine) and the A1 antagonist DPCPX (8-Cyclopentyl-1,3-dipropylxanthine) administered to chronic pilocarpine epileptic rats would respectively decrease and increase the frequency of SRS and hippocampal excitability. Four months after Pilo-induced SE, chronic epileptic rats were video-monitored for the recording of SRS before (basal) and after a 2-week treatment with RPia (25µg/kg) or DPCPX (50µg/kg). Following sacrifice, brain slices were studied with electrophysiology. We found that rats given RPia had a 93% nonsignificant reduction in the frequency of seizures compared with their own pretreatment baseline. In contrast, the administration of DPCPX resulted in an 87% significant increase in seizure rate. Nontreated epileptic rats had a similar frequency of seizures along the study. Corroborating our behavioral data, in vitro recordings showed that slices from animals previously given DPCPX had a shorter latency to develop epileptiform activity, longer and higher DC shifts, and higher spike amplitude compared with slices from nontreated Pilo controls. In contrast, smaller spike amplitude was recorded in slices from animals given RPia. In summary, the administration of A1 agonists reduced hippocampal excitability but not the frequency of spontaneous recurrent seizures in chronic epileptic rats, whereas A1 receptor antagonists increased both.


Asunto(s)
Agonistas del Receptor de Adenosina A1/farmacología , Antagonistas del Receptor de Adenosina A1/farmacología , Convulsivantes/farmacología , Epilepsia/inducido químicamente , Agonistas Muscarínicos/farmacología , Pilocarpina/farmacología , Convulsiones/inducido químicamente , Convulsiones/prevención & control , Animales , Encéfalo/fisiopatología , Electroencefalografía/efectos de los fármacos , Epilepsia/fisiopatología , Masculino , Fenilisopropiladenosina/farmacología , Ratas , Ratas Wistar , Convulsiones/fisiopatología , Xantinas/farmacología
12.
J Neuroinflammation ; 12: 162, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26337974

RESUMEN

BACKGROUND: Status epilepticus (SE) is a severe condition that may lead to hippocampal cell loss and epileptogenesis. Some of the mechanisms associated with SE-induced cell death are excitotoxicity, neuroinflammation, and apoptosis. OBJECTIVE: The objective of the present study is to test the hypothesis that DBS has anti-inflammatory and antiapoptotic effects when applied during SE. METHODS: Rats undergoing pilocarpine-induced SE were treated with anterior thalamic nucleus (AN) deep brain stimulation (DBS). Inflammatory changes and caspase 3 activity were measured within 1 week of treatment. RESULTS: In pilocarpine-treated rats, DBS countered the significant increase in hippocampal caspase 3 activity and interleukin-6 (IL-6) levels that follows SE but had no effect on tumor necrosis factor α (TNFα). CONCLUSIONS: DBS has anti-inflammatory and antiapoptotic effects when given to animals undergoing status.


Asunto(s)
Apoptosis/fisiología , Estimulación Encefálica Profunda/métodos , Encefalitis/etiología , Encefalitis/terapia , Estado Epiléptico/complicaciones , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía , Hipocampo/metabolismo , Masculino , Agonistas Muscarínicos , Pilocarpina/toxicidad , Ratas , Ratas Wistar , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología
13.
Front Cell Neurosci ; 8: 312, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25324724

RESUMEN

Despite the effectiveness of anterior thalamic nucleus (AN) deep brain stimulation (DBS) for the treatment of epilepsy, mechanisms responsible for the antiepileptic effects of this therapy remain elusive. As adenosine modulates neuronal excitability and seizure activity in animal models, we hypothesized that this nucleoside could be one of the substrates involved in the effects of AN DBS. We applied 5 days of stimulation to rats rendered chronically epileptic by pilocarpine injections and recorded epileptiform activity in hippocampal slices. We found that slices from animals given DBS had reduced hippocampal excitability and were less susceptible to develop ictal activity. In live animals, AN DBS significantly increased adenosine levels in the hippocampus as measured by microdialysis. The reduced excitability of DBS in vitro was completely abolished in animals pre-treated with A1 receptor antagonists and was strongly potentiated by A1 receptor agonists. We conclude that some of the antiepileptic effects of DBS may be mediated by adenosine.

14.
PLoS One ; 9(6): e97618, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24892420

RESUMEN

Deep brain stimulation (DBS) has been investigated for the treatment of epilepsy. In rodents, an increase in the latency for the development of seizures and status epilepticus (SE) has been reported in different animal models but the consequences of delivering stimulation to chronic epileptic animals have not been extensively addressed. We study the effects of anterior thalamic nucleus (AN) stimulation at different current intensities in rats rendered epileptic following pilocarpine (Pilo) administration. Four months after Pilo-induced SE, chronic epileptic rats were bilaterally implanted with AN electrodes or had sham-surgery. Stimulation was delivered for 6 h/day, 5 days/week at 130 Hz, 90 µsec. and either 100 µA or 500 µA. The frequency of spontaneous recurrent seizures in animals receiving stimulation was compared to that recorded in the preoperative period and in rats given sham treatment. To investigate the effects of DBS on hippocampal excitability, brain slices from animals receiving AN DBS or sham surgery were studied with electrophysiology. We found that rats treated with AN DBS at 100 µA had a 52% non-significant reduction in the frequency of seizures as compared to sham-treated controls and 61% less seizures than at baseline. Animals given DBS at 500 µA had 5.1 times more seizures than controls and a 2.8 fold increase in seizure rate as compared to preoperative values. In non-stimulated controls, the average frequency of seizures before and after surgery remained unaltered. In vitro recordings have shown that slices from animals previously given DBS at 100 µA had a longer latency for the development of epileptiform activity, shorter and smaller DC shifts, and a smaller spike amplitude compared to non-stimulated controls. In contrast, a higher spike amplitude was recorded in slices from animals given AN DBS at 500 µA.


Asunto(s)
Núcleos Talámicos Anteriores/fisiopatología , Estimulación Encefálica Profunda , Epilepsia/fisiopatología , Animales , Enfermedad Crónica , Masculino , Ratas Wistar , Convulsiones
16.
Phys Biol ; 6(3): 036010, 2009 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19461129

RESUMEN

We proposed a reaction model for investigating interactions between K+ and the palytoxin-sodium-potassium (PTX-Na+/K+) pump complex under conditions where enzyme phosphorylation may occur. The model is composed of (i) the Albers-Post model for Na+/K+-ATPase, describing Na+ and K+ pumping; (ii) the reaction model proposed for Na+/K+-ATPase interactions with its ligands (Na+, K+, ATP, ADP and P) and with PTX. A mathematical model derived for representing the reactions was used to simulate experimental studies of the PTX-induced current, in different concentrations for the pump ligands. The simulations allow interpretation of the simultaneous action of Na+/K+-ATPase phosphorylation and K+ on the PTX-induced channels. The results suggest that(i) phosphorylation increases the PTX toxic effect, increasing its affinity and reducing the K+occlusion rate, and (ii) K+ causes channel blockage, increases the toxin dissociation rate and impedes the induced channel phosphorylation, implying reduction of the PTX toxic effect.


Asunto(s)
Acrilamidas/química , Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Acrilamidas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Venenos de Cnidarios , Biología Computacional , Cinética , Fosforilación , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química
17.
Comput Biol Chem ; 33(1): 14-21, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18706866

RESUMEN

K(+) has been appointed as the main physiological inhibitor of the palytoxin (PTX) effect on the Na(+)/K(+) pump. This toxin acts opening monovalent cationic channels through the Na(+)/K(+) pump. We investigate, by means of computational modeling, the kinetic mechanisms related with K(+) interacting with the complex PTX-Na(+)/K(+) pump. First, a reaction model, with structure similar to Albers-Post model, describing the functional cycle of the pump, was proposed for describing K(+) interference on the complex PTX-Na(+)/K(+) pump in the presence of intracellular ATP. A mathematic model was derived from the reaction model and it was possible to solve numerically the associated differential equations and to simulate experimental maneuvers about the PTX induced currents in the presence of K(+) in the intra- and extracellular space as well as ATP in the intracellular. After the model adjusting to the experimental data, a Monte Carlo method for sensitivity analysis was used to analyze how each reaction parameter acts during each experimental maneuver involving PTX. For ATP and K(+) concentrations conditions, the simulations suggest that the enzyme substate with ATP bound to its high-affinity sites is the main substate for the PTX binding. The activation rate of the induced current is limited by the K(+) deocclusion from the PTX-Na(+)/K(+) pump complex. The K(+) occlusion in the PTX induced channels in the enzymes with ATP bound to its low-affinity sites is the main mechanism responsible for the reduction of the enzyme affinity to PTX.


Asunto(s)
Acrilamidas/farmacología , Potasio/farmacología , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , Venenos de Cnidarios , Modelos Teóricos , Sensibilidad y Especificidad
18.
Phys Biol ; 5(3): 036005, 2008 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-18663280

RESUMEN

We propose a reaction model for the palytoxin-sodium-potassium (PTX-Na(+)/K(+)) pump complex. The model, which is similar to the Albers-Post model for Na(+)/K(+)-ATPase, is used to elucidate the effect of PTX on Na(+)/K(+)-ATPase during the enzyme interactions with Na(+) and/or K(+) ions. Conformational substates and reactions for the pump are incorporated into the Albers-Post model to represent enzymes with or without bound PTX. A mathematical model based on the reaction scheme is used in simulations modeling experimental studies of PTX-induced ionic currents. Our simulations suggest that (i) extracellular Na(+) as well as K(+) promotes PTX-induced channel blockage; (ii) extracellular K(+) accelerates PTX unbinding; and (iii) K(+) occlusion in the PTX-pump complex is essential for describing the PTX-induced current dynamics.


Asunto(s)
Acrilamidas/farmacología , Simulación por Computador , Transporte Iónico/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Algoritmos , Cationes , Membrana Celular/química , Membrana Celular/metabolismo , Venenos de Cnidarios , Transporte Iónico/fisiología , Modelos Biológicos , Potasio/química , Potasio/metabolismo , Sodio/química , Sodio/metabolismo
19.
Epilepsia ; 49(11): 1908-24, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18513350

RESUMEN

PURPOSE: The aim of this work is to study, by means of computational simulations, the induction and sustaining of nonsynaptic epileptiform activity. METHODS: The computational model consists of a network of cellular bodies of neurons and glial cells connected to a three-dimensional (3D) network of juxtaposed extracellular compartments. The extracellular electrodiffusion calculation was used to simulate the extracellular potential. Each cellular body was represented in terms of the transmembrane ionic transports (Na(+)/K(+) pumps, ionic channels, and cotransport mechanisms), the intercellular electrodiffusion through gap-junctions, and the neuronal interaction by electric field and the variation of cellular volume. RESULTS: The computational model allows simulating the nonsynaptic epileptiform activity and the extracellular potential captured the main feature of the experimental measurements. The simulations of the concomitant ionic fluxes and concentrations can be used to propose the basic mechanisms involved in the induction and sustaining of the activities. DISCUSSION: The simulations suggest: The bursting induction is mediated by the Cl(-) Nernst potential overcoming the transmembrane potential in response to the extracellular [K(+)] increase. The burst onset is characterized by a critical point defined by the instant when the Na(+) influx through its permeable ionic channels overcomes the Na(+)/K(+) pump electrogenic current. The burst finalization is defined by another critical point, when the electrogenic current of the Na(+)/K(+) pump overcomes its influx through the channels.


Asunto(s)
Encéfalo/fisiopatología , Epilepsia/epidemiología , Epilepsia/fisiopatología , Encéfalo/metabolismo , Simulación por Computador , Epilepsia/diagnóstico , Uniones Comunicantes/fisiología , Humanos , Potenciales de la Membrana/fisiología , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Neuroglía/fisiología , Neuronas/fisiología , Canales de Potasio/metabolismo
20.
Comput Biol Chem ; 32(4): 273-81, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18485826

RESUMEN

A mathematical description of the restoring ionic mechanisms in a compartmentalized electrochemical model of neuronal tissues was developed aiming at studying the essential conditions for refractoriness of Leão's spreading depression (SD). The model comprehends the representation of a plexiform layer, composed by synaptic terminals and glial process immersed in an extracellular space where the space-temporal variations of the ionic concentrations were described by electrodiffusion equations. The synaptic transmission was described by differential equations representing the corresponding chemical reactions associated with the neurotransmitter release, diffusion, binding to its receptor in the postsynaptic membrane and the uptake by the presynaptic terminals. The effect of the neurotransmitter binding to the receptor induces changes in the permeability of the postsynaptic membrane and the corresponding transmembrane fluxes were calculated. The fluxes promote changes in the external ionic concentrations, changing the ionic electrodiffusion through the extracellular space. The description of these mechanisms provides the reaction-diffusion structure of the model and allows simulating the wave propagation. The simulations of experimental maneuvers of application of two consecutive stimuli for inducing SD suggest: (i) the extracellular space acts coupling the postsynaptic terminals and glial cells recovery mechanisms in such a way that the extracellular ionic concentrations change only during the wave front; (ii) the potassium removed from the extracellular by the glial cells, originated from the depolarization of the synaptic terminals returns slowly limited by the glial release, contributing for the refractoriness of the tissue; (iii) critical points for sodium and potassium transmembrane fluxes could be identified, allowing proposing specific conditions for the interplay between channels and pumps fluxes for determining the absolute and relative refractory periods.


Asunto(s)
Simulación por Computador , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Neurotransmisores/metabolismo , Terminales Presinápticos/fisiología , Transmisión Sináptica/fisiología , Algoritmos , Difusión , Campos Electromagnéticos , Espacio Extracelular/metabolismo , Neuroglía/metabolismo , Potasio/metabolismo , Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA