Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(5): 7259-7264, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859861

RESUMEN

High bitrate mid-infrared links using simple (NRZ) and multi-level (PAM-4) data coding schemes have been realized in the 8 µm to 14 µm atmospheric transparency window. The free space optics system is composed of unipolar quantum optoelectronic devices, namely a continuous wave quantum cascade laser, an external Stark-effect modulator and a quantum cascade detector, all operating at room-temperature. Pre- and post-processing are implemented to get enhanced bitrates, especially for PAM-4 where inter-symbol interference and noise are particularly detrimental to symbol demodulation. By exploiting these equalization procedures, our system, with a full frequency cutoff of 2 GHz, has reached transmission bitrates of 12 Gbit/s NRZ and 11 Gbit/s PAM-4 fulfilling the 6.25 % overhead hard-decision forward error correction threshold, limited only by the low signal-to-noise ratio of our detector.

2.
Opt Express ; 30(12): 20515-20531, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36224794

RESUMEN

Metamaterials have played a major role in the development of optoelectronic devices due to their capability of coupling free-space radiation with active materials at the nanometer scale. In particular, unipolar photodetectors display highly improved performances when implemented into patch-antenna arrays. We study light-coupling and absorption in patch-antenna metamaterials by combining an experimental investigation, an analytical approach based on coupled mode theory and numerical simulations in order to understand how the geometrical parameters influence the electromagnetic energy transfer from the free-space to the active material. Our findings are applied to the design of optimized unipolar photodetectors with improved quantum efficiency.

3.
Opt Express ; 25(4): 3077-3082, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241524

RESUMEN

We report experimental realization of phase-locked quantum cascade laser (QCL) array using a monolithically integrated Talbot cavity. An array with six laser elements at a wavelength of ~4.8 µm shows a maximum peak power of ~4 W which is more than 5 times higher than that of a single ridge laser element and a slope efficiency of 1 W/A at room temperature. Operation of in-phase coherent supermode has been achieved over the whole dynamic range of the Talbot-cavity QCL. The structure was analysed using a straightforward theoretical model, showing quantitatively good agreement with the experimental results. The reduced thermal resistance makes the structure an attractive approach to achieve high beam quality continuous wave QCLs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...