Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Biol Cell ; 33(6): ar54, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34910584

RESUMEN

Patient stem cell-derived models enable imaging of complex disease phenotypes and the development of scalable drug discovery platforms. Current preclinical methods for assessing cellular activity do not, however, capture the full intricacies of disease-induced disturbances and instead typically focus on a single parameter, which impairs both the understanding of disease and the discovery of effective therapeutics. Here, we describe a cloud-based image processing and analysis platform that captures the intricate activity profile revealed by GCaMP fluorescence recordings of intracellular calcium changes and enables the discovery of molecules that correct 153 parameters that define the amyotrophic lateral sclerosis motor neuron disease phenotype. In a high-throughput screen, we identified compounds that revert the multiparametric disease profile to that found in healthy cells, a novel and robust measure of therapeutic potential quite distinct from unidimensional screening. This platform can guide the development of therapeutics that counteract the multifaceted pathological features of diseased cellular activity.


Asunto(s)
Esclerosis Amiotrófica Lateral , Descubrimiento de Drogas , Esclerosis Amiotrófica Lateral/genética , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos , Humanos , Neuronas , Fenotipo
2.
Muscle Nerve ; 64(5): 532-537, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34378224

RESUMEN

Diagnostic criteria for amyotrophic lateral sclerosis (ALS) are complex, incorporating multiple levels of certainty from possible through to definite, and are thereby prone to error. Specifically, interrater variability was previously established to be poor, thereby limiting utility as diagnostic enrollment criteria for clinical trials. In addition, the different levels of diagnostic certainty do not necessarily reflect disease progression, adding confusion to the diagnostic algorithm. Realizing these inherent limitations, the World Federation of Neurology, the International Federation of Clinical Neurophysiology, the International Alliance of ALS/MND Associations, the ALS Association (United States), and the Motor Neuron Disease Association convened a consensus meeting (Gold Coast, Australia, 2019) to consider the development of simpler criteria that better reflect clinical practice, and that could merge diagnostic categories into a single entity. The diagnostic accuracy of the novel Gold Coast criteria was subsequently interrogated through a large cross-sectional study, which established an increased sensitivity for ALS diagnosis when compared with previous criteria. Diagnostic accuracy was maintained irrespective of disease duration, functional status, or site of disease onset. Importantly, the Gold Coast criteria differentiated atypical phenotypes, such as primary lateral sclerosis, from the more typical ALS phenotype. It is proposed that the Gold Coast criteria should be incorporated into routine practice and clinical trial settings.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de la Neurona Motora , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/terapia , Australia , Estudios Transversales , Enfermedad de la Neurona Motora/diagnóstico
3.
Cell Rep ; 35(10): 109224, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34107252

RESUMEN

Drug development is hampered by poor target selection. Phenotypic screens using neurons differentiated from patient stem cells offer the possibility to validate known and discover novel disease targets in an unbiased fashion. To identify targets for managing hyperexcitability, a pathological feature of amyotrophic lateral sclerosis (ALS), we design a multi-step screening funnel using patient-derived motor neurons. High-content live cell imaging is used to evaluate neuronal excitability, and from a screen against a chemogenomic library of 2,899 target-annotated compounds, 67 reduce the hyperexcitability of ALS motor neurons carrying the SOD1(A4V) mutation, without cytotoxicity. Bioinformatic deconvolution identifies 13 targets that modulate motor neuron excitability, including two known ALS excitability modulators, AMPA receptors and Kv7.2/3 ion channels, constituting target validation. We also identify D2 dopamine receptors as modulators of ALS motor neuron excitability. This screen demonstrates the power of human disease cell-based phenotypic screens for identifying clinically relevant targets for neurological disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Diferenciación Celular , Humanos , Fenotipo
4.
PLoS One ; 9(10): e109401, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25314276

RESUMEN

In their natural habitat, the peripheral nerve, Schwann cells (SCs) form nicely aligned pathways (also known as the bands of Büngner) that guide regenerating axons to their targets. Schwann cells that are implanted in the lesioned spinal cord fail to align in pathways that could support axon growth but form cellular clusters that exhibit only limited intermingling with the astrocytes and meningeal cells (MCs) that are present in the neural scar. The formation of cell clusters can be studied in co-cultures of SCs and MCs. In these co-cultures SCs form cluster-like non-overlapping cell aggregates with well-defined boundaries. There are several indications that neuropilins (NRPs) play an important role in MC-induced SC aggregation. Both SCs and MCs express NRP1 and NRP2 and SCs express the NRP ligands Sema3B, C and E while MCs express Sema3A, C, E and F. We now demonstrate that in SC-MC co-cultures, siRNA mediated knockdown of NRP2 in SCs decreased the formation of SC clusters while these SCs maintained their capacity to align in bands of Büngner-like columnar arrays. Unexpectedly, knockdown of NRP1 expression resulted in a significant increase in SC aggregation. These results suggest that a reduction in NRP2 expression may enhance the capacity of implanted SCs to interact with MCs that invade a neural scar formed after a lesion of the spinal cord.


Asunto(s)
Meninges/citología , Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Células de Schwann/citología , Animales , Comunicación Celular , Células Cultivadas , Técnicas de Cocultivo , Femenino , Meninges/metabolismo , Neuropilina-1/antagonistas & inhibidores , Neuropilina-1/genética , Neuropilina-2/antagonistas & inhibidores , Neuropilina-2/genética , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Endogámicas F344 , Células de Schwann/metabolismo , Transfección
5.
Exp Neurol ; 261: 594-609, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24842489

RESUMEN

Olfactory ensheathing glial cells (OECs) are a specialized type of glia that form a continuously aligned cellular pathway that actively supports unprecedented regeneration of primary olfactory axons from the periphery into the central nervous system. Implantation of OECs stimulates neural repair in experimental models of spinal cord, brain and peripheral nerve injury and delays disease progression in animal models for neurodegenerative diseases like amyotrophic lateral sclerosis. OECs implanted in the injured spinal cord display a plethora of pro-regenerative effects; they promote axonal regeneration, reorganize the glial scar, remyelinate axons, stimulate blood vessel formation, have phagocytic properties and modulate the immune response. Recently genome wide transcriptional profiling and proteomics analysis combined with classical or larger scale "medium-throughput" bioassays have provided novel insights into the molecular mechanism that endow OECs with their pro-regenerative properties. Here we review these studies and show that the gaps that existed in our understanding of the molecular basis of the reparative properties of OECs are narrowing. OECs express functionally connected sets of genes that can be linked to at least 10 distinct processes directly relevant to neural repair. The data indicate that OECs exhibit a range of synergistic cellular activities, including active and passive stimulation of axon regeneration (by secretion of growth factors, axon guidance molecules and basement membrane components) and critical aspects of tissue repair (by structural remodeling and support, modulation of the immune system, enhancement of neurotrophic and antigenic stimuli and by metabolizing toxic macromolecules). Future experimentation will have to further explore the newly acquired knowledge to enhance the therapeutic potential of OECs.


Asunto(s)
Trasplante de Células/métodos , Regeneración Nerviosa/fisiología , Enfermedades Neurodegenerativas/cirugía , Neurogénesis/fisiología , Neuroglía/fisiología , Nervio Olfatorio/citología , Animales , Humanos , Nervio Olfatorio/trasplante
6.
PLoS One ; 8(8): e71076, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951085

RESUMEN

Although the peripheral nerve is capable of regeneration, only a small minority of patients regain normal function after surgical reconstruction of a major peripheral nerve lesion, resulting in a severe and lasting negative impact on the quality of life. Glial cell-line derived neurotrophic factor (GDNF) has potent survival- and outgrowth-promoting effects on motoneurons, but locally elevated levels of GDNF cause trapping of regenerating axons and the formation of nerve coils. This phenomenon has been called the "candy store" effect. In this study we created gradients of GDNF in the sciatic nerve after a ventral root avulsion. This approach also allowed us to study the effect of increasing concentrations of GDNF on Schwann cell proliferation and morphology in the injured peripheral nerve. We demonstrate that lentiviral vectors can be used to create a 4 cm long GDNF gradient in the intact and lesioned rat sciatic nerve. Nerve coils were formed throughout the gradient and the number and size of the nerve coils increased with increasing GDNF levels in the nerve. In the nerve coils, Schwann cell density is increased, their morphology is disrupted and myelination of axons is severely impaired. The total number of regenerated and surviving motoneurons is not enhanced after the distal application of a GDNF gradient, but increased sprouting does result in higher number of motor axon in the distal segment of the sciatic nerve. These results show that lentiviral vector mediated overexpression of GDNF exerts multiple effects on both Schwann cells and axons and that nerve coil formation already occurs at relatively low concentrations of exogenous GDNF. Controlled expression of GDNF, by using a viral vector with regulatable GDNF expression, may be required to avoid motor axon trapping and to prevent the effects on Schwann cell proliferation and myelination.


Asunto(s)
Vectores Genéticos/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Lentivirus/genética , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Axones/metabolismo , Supervivencia Celular , Femenino , Expresión Génica , Vectores Genéticos/administración & dosificación , Neuronas Motoras/metabolismo , Vaina de Mielina/metabolismo , Regeneración Nerviosa , Ratas , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Factores de Tiempo , Transducción Genética
7.
J Neurosci ; 33(27): 11116-35, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23825416

RESUMEN

Olfactory ensheathing cells (OECs) have neuro-restorative properties in animal models for spinal cord injury, stroke, and amyotrophic lateral sclerosis. Here we used a multistep screening approach to discover genes specifically contributing to the regeneration-promoting properties of OECs. Microarray screening of the injured olfactory pathway and of cultured OECs identified 102 genes that were subsequently functionally characterized in cocultures of OECs and primary dorsal root ganglion (DRG) neurons. Selective siRNA-mediated knockdown of 16 genes in OECs (ADAMTS1, BM385941, FZD1, GFRA1, LEPRE1, NCAM1, NID2, NRP1, MSLN, RND1, S100A9, SCARB2, SERPINI1, SERPINF1, TGFB2, and VAV1) significantly reduced outgrowth of cocultured DRG neurons, indicating that endogenous expression of these genes in OECs supports neurite extension of DRG neurons. In a gain-of-function screen for 18 genes, six (CX3CL1, FZD1, LEPRE1, S100A9, SCARB2, and SERPINI1) enhanced and one (TIMP2) inhibited neurite growth. The most potent hit in both the loss- and gain-of-function screens was SCARB2, a protein that promotes cholesterol secretion. Transplants of fibroblasts that were genetically modified to overexpress SCARB2 significantly increased the number of regenerating DRG axons that grew toward the center of a spinal cord lesion in rats. We conclude that expression of SCARB2 enhances regenerative sprouting and that SCARB2 contributes to OEC-mediated neuronal repair.


Asunto(s)
Axones/fisiología , Proteínas de Membrana de los Lisosomas/biosíntesis , Impresión Molecular/métodos , Regeneración Nerviosa/fisiología , Mucosa Olfatoria/fisiología , Receptores Depuradores/biosíntesis , Células Receptoras Sensoriales/fisiología , Animales , Células Cultivadas , Femenino , Pruebas Genéticas/métodos , Células HEK293 , Humanos , Proteínas de Membrana de los Lisosomas/genética , Mesotelina , Bulbo Olfatorio/fisiología , Mucosa Olfatoria/citología , Embarazo , Ratas , Ratas Endogámicas F344 , Ratas Wistar , Receptores Depuradores/genética , Células Receptoras Sensoriales/citología
8.
Cell Transplant ; 21(9): 1853-65, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22449606

RESUMEN

In this study, we assess the feasibility of bioluminescence imaging to monitor the survival of Schwann cells (SCs) and olfactory ensheathing glia cells (OECs) after implantation in the lesioned spinal cord of adult rats. To this end, purified SCs and OECs were genetically modified with lentiviral vectors encoding luciferase-2 and GFP and implanted in the lesioned dorsal column. The bioluminescent signal was monitored for over 3 months, and at 7 and 98 days postsurgery, the signal was compared to standard histological analysis of GFP expression in the spinal cords. The temporal profile of the bioluminescent signal showed three distinct phases for both cell types. (I) A relatively stable signal in the first week. (II) A progressive decline in signal strength in the second and third week. (III) After the third week, the average bioluminescent signal stabilized for both cell types. Interestingly, in the first week, the peak of the bioluminescent signal after luciferin injection was delayed when compared to later time points. Similar to in vitro, our data indicated a linear relationship between the in vivo bioluminescent signal and the GFP signal of the SCs and OECs in the spinal cords when the results of both the 7 and 98 day time points are combined. This is the first report of the use of in vivo bioluminescence to monitor cell survival in the lesioned rat spinal cord. Bioluminescence could be a potentially powerful, noninvasive strategy to examine the efficacy of treatments that aim to improve the survival of proregenerative cells transplanted in the injured rat spinal cord.


Asunto(s)
Neuroglía/trasplante , Bulbo Olfatorio/patología , Células de Schwann/trasplante , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/cirugía , Animales , Modelos Animales de Enfermedad , Femenino , Proteínas Fluorescentes Verdes/análisis , Mediciones Luminiscentes/métodos , Neuroglía/patología , Bulbo Olfatorio/trasplante , Ratas , Células de Schwann/patología
9.
J Neurosci Methods ; 201(1): 228-38, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21855577

RESUMEN

Several diseases and injuries of the central nervous system could potentially be treated by delivery of an enzyme, which might most effectively be achieved by gene therapy. In particular, the bacterial enzyme chondroitinase ABC is beneficial in animal models of spinal cord injury. We have adapted the chondroitinase gene so that it can direct secretion of active chondroitinase from mammalian cells, and inserted it into lentiviral vectors. When injected into adult rat brain, these vectors lead to extensive secretion of chondroitinase, both locally and from long-distance axon projections, with activity persisting for more than 4 weeks. In animals which received a simultaneous lesion of the corticospinal tract, the vector reduced axonal die-back and promoted sprouting and short-range regeneration of corticospinal axons. The same beneficial effects on damaged corticospinal axons were observed in animals which received the chondroitinase lentiviral vector directly into the vicinity of a spinal cord lesion.


Asunto(s)
Corteza Cerebral/enzimología , Condroitina ABC Liasa/genética , Regulación Enzimológica de la Expresión Génica , Vectores Genéticos/genética , Lentivirus/genética , Regeneración Nerviosa/genética , Traumatismos de la Médula Espinal/enzimología , Animales , Células Cultivadas , Condroitina ABC Liasa/administración & dosificación , Condroitina ABC Liasa/biosíntesis , Vectores Genéticos/administración & dosificación , Vectores Genéticos/biosíntesis , Células HEK293 , Humanos , Masculino , Ratones , Tractos Piramidales/enzimología , Ratas , Ovinos , Traumatismos de la Médula Espinal/genética
10.
Exp Neurol ; 229(1): 10-45, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21396936

RESUMEN

Genome wide transcriptional profiling and large scale proteomics have emerged as two powerful methods to dissect the molecular properties of specific neural tissues or cell types on a global scale. Several genome-wide transcriptional profiling and proteomics studies have been published on cultured olfactory ensheathing cells (OEC). In this article we present a meta-analysis of all five published and publicly available micro-array gene expression datasets of cultured early-passage-OB-OEC with other cell types (Schwann cells, late-passage-OB-OEC, mucosa-OEC, an OEC cell line, and acutely dissected OEC). The aim of this meta-analysis is to identify genes and molecular pathways that are found in multiple instead of one isolated study. 454 Genes were detected in at least three out of five microarray datasets. In this "Top-list", genes involved in the biological processes "growth of neurites", "blood vessel development", "migration of cells" and "immune response" were strongly overrepresented. By applying network analysis tools, molecular networks were constructed and Hub-genes were identified that may function as key genes in the above mentioned interrelated processes. We also identified 7 genes (ENTPD2, MATN2, CTSC, PTHLH, GLRX1, COL27A1 and ID2) with uniformly higher or lower expression in early-passage-OB-OEC in all five microarray comparisons. These genes have diverse but intriguing roles in neuroprotection, neurite extension and/or tissue repair. Our meta-analysis provides novel insights into the molecular basis of OB-OEC-mediated neural repair and can serve as a repository for investigators interested in the molecular biology of OEC. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.


Asunto(s)
Regulación de la Expresión Génica , Neuroglía/fisiología , Bulbo Olfatorio/fisiología , Análisis por Matrices de Proteínas/métodos , Animales , Redes Reguladoras de Genes/genética , Humanos , Neuroglía/citología , Bulbo Olfatorio/citología
11.
J Neurosci Res ; 87(7): 1556-64, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19140223

RESUMEN

Schwann cells (SCs) and olfactory ensheathing glia (OEG) have both been used as cellular transplants to promote spinal cord repair. Both cell types support axonal regeneration and have beneficial effects on functional recovery. A significant difference between SCs and OEG is the effect of these cell types on astrocytes (ACs) present in the neural scar. In contrast to OEG, which associate and intermingle with ACs, SCs and ACs form separate cellular territories. Here, we show that OEG and SCs also interact differently with meningeal cells (MCs), another major cellular component of the neural scar. Whereas OEG intermingle with MCs in cocultures, SCs aggregate into well-defined cell clusters. Our data suggest that (a) soluble factor(s) as well as direct cellular contact are involved in the MC-induced SC clustering. Furthermore, the cluster formation of SCs in coculture with MCs is different from the previously reported segregation of SCs and ACs in coculture. The present results help to understand the differential behavior of both cell types after transplantation in the injured spinal cord and will be important to either determine which cell has optimal capacities to render the scar more permissive for regeneration, or to exploit the transplantation of both cell types in combination.


Asunto(s)
Meninges/fisiología , Neuroglía/fisiología , Células de Schwann/fisiología , Animales , Astrocitos/fisiología , Agregación Celular/fisiología , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Femenino , Inmunohistoquímica , Meninges/citología , Meninges/metabolismo , Bulbo Olfatorio/fisiología , Ratas , Ratas Endogámicas F344 , Nervio Ciático/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...