RESUMEN
Copper (Cu) at ancient metallurgy sites represents the earliest instance of anthropogenically generated metal pollution. Such sites are spread across a wide range of environments from Eurasia to South America, and provide a unique opportunity to investigate the past and present extent and impact of metalworking contamination. Establishing the concentration and extent of soil Cu at archaeometallurgy sites can enhance archaeological interpretations of site use but can also, more fundamentally, provide an initial indication of contamination risk from such sites. Systematic evaluations of total soil Cu concentrations at ancient metalworking sites have not been conducted, due in part to the limitations of conventional laboratory-based protocols. In this paper, we first review what is known about Cu soil concentrations at ancient metallurgy sites. We then assess the benefits and challenges of portable X-ray fluorescence spectrometry (pXRF) as an alternative, rapid technique for the assessment of background and contaminant levels of Cu in soils. We conclude that pXRF is an effective tool for identifying potential contamination. Finally, we provide an overview of some major considerations beyond total Cu concentrations, such as bioavailability assessments, that will need to be considered at such sites to move toward a complete assessment of environmental and human risk.