Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(18): 32887-32894, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242341

RESUMEN

Integrated photonic architectures based on optical waveguides are one of the leading candidates for the future realisation of large-scale quantum computation. One of the central challenges in realising this goal is simultaneously minimising loss whilst maximising interferometric visibility within waveguide circuits. One approach is to reduce circuit complexity and depth. A major constraint in most planar waveguide systems is that beamsplitter transformations between distant optical modes require numerous intermediate SWAP operations to couple them into nearest neighbour proximity, each of which introduces loss and scattering. Here, we propose a 3D architecture which can significantly mitigate this problem by geometrically bypassing trivial intermediate operations. We demonstrate the viability of this concept by considering a worst-case 2D scenario, where we interfere the two most distant optical modes in a planar structure. Using femtosecond laser direct-writing technology we experimentally construct a 2D architecture to implement Hong-Ou-Mandel interference between its most distant modes, and a 3D one with corresponding physical dimensions, demonstrating significant improvement in both fidelity and efficiency in the latter case. In addition to improving fidelity and efficiency of individual non-adjacent beamsplitter operations, this approach provides an avenue for reducing the optical depth of circuits comprising complex arrays of beamsplitter operations.

2.
Phys Rev Lett ; 119(8): 080502, 2017 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-28952770

RESUMEN

Quantum Fourier transforms (QFTs) have gained increased attention with the rise of quantum walks, boson sampling, and quantum metrology. Here, we present and demonstrate a general technique that simplifies the construction of QFT interferometers using both path and polarization modes. On that basis, we first observe the generalized Hong-Ou-Mandel effect with up to four photons. Furthermore, we directly exploit number-path entanglement generated in these QFT interferometers and demonstrate optical phase supersensitivities deterministically.

3.
Phys Rev Lett ; 118(11): 110503, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28368618

RESUMEN

A major challenge in optical quantum processing is implementing large, stable interferometers. We offer a novel approach: virtual, measurement-based interferometers that are programed on the fly solely by the choice of homodyne measurement angles. The effects of finite squeezing are captured as uniform amplitude damping. We compare our proposal to existing (physical) interferometers and consider its performance for BosonSampling, which could demonstrate postclassical computational power in the near future. We prove its efficiency in time and squeezing (energy) in this setting.

5.
Sci Rep ; 6: 19864, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26812924

RESUMEN

We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled on lattices that contain static defects which reverse the walker's direction. We implement a dephasing process after each step which allows us to smoothly interpolate between classical and quantum random walks as well as study the effect of dephasing on the quantum walk. Our key results show that a quantum walker escapes a finite boundary dramatically faster than a classical walker and that this advantage remains in the presence of heavily congested lattices.

6.
7.
Phys Rev Lett ; 114(17): 170802, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25978219

RESUMEN

Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

8.
Phys Rev Lett ; 113(12): 120501, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25279613

RESUMEN

We present an architecture for arbitrarily scalable boson sampling using two nested fiber loops. The architecture has fixed experimental complexity, irrespective of the size of the desired interferometer, whose scale is limited only by fiber and switch loss rates. The architecture employs time-bin encoding, whereby the incident photons form a pulse train, which enters the loops. Dynamically controlled loop coupling ratios allow the construction of the arbitrary linear optics interferometers required for boson sampling. The architecture employs only a single point of interference and may thus be easier to stabilize than other approaches. The scheme has polynomial complexity and could be realized using demonstrated present-day technologies.

9.
Sci Rep ; 4: 4791, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24762398

RESUMEN

Quantum walks exhibit many unique characteristics compared to classical random walks. In the classical setting, self-avoiding random walks have been studied as a variation on the usual classical random walk. Here the walker has memory of its previous locations and preferentially avoids stepping back to locations where it has previously resided. Classical self-avoiding random walks have found numerous algorithmic applications, most notably in the modelling of protein folding. We consider the analogous problem in the quantum setting - a quantum walk in one dimension with tunable levels of self-avoidance. We complement a quantum walk with a memory register that records where the walker has previously resided. The walker is then able to avoid returning back to previously visited sites or apply more general memory conditioned operations to control the walk. We characterise this walk by examining the variance of the walker's distribution against time, the standard metric for quantifying how quantum or classical a walk is. We parameterise the strength of the memory recording and the strength of the memory back-action on the walker, and investigate their effect on the dynamics of the walk. We find that by manipulating these parameters, which dictate the degree of self-avoidance, the walk can be made to reproduce ideal quantum or classical random walk statistics, or a plethora of more elaborate diffusive phenomena. In some parameter regimes we observe a close correspondence between classical self-avoiding random walks and the quantum self-avoiding walk.

10.
Phys Rev Lett ; 109(15): 150501, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23102287

RESUMEN

In the setting of networked computation, data security can be a significant concern. Here we consider the problem of allowing a server to remotely manipulate client supplied data, in such a way that both the information obtained by the client about the server's operation and the information obtained by the server about the client's data are significantly limited. We present a protocol for achieving such functionality in two closely related models of restricted quantum computation-the boson sampling and quantum walk models. Because of the limited technological requirements of the boson scattering model, small scale implementations of this technique are feasible with present-day technology.

11.
Science ; 336(6077): 55-8, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22403179

RESUMEN

Multidimensional quantum walks can exhibit highly nontrivial topological structure, providing a powerful tool for simulating quantum information and transport systems. We present a flexible implementation of a two-dimensional (2D) optical quantum walk on a lattice, demonstrating a scalable quantum walk on a nontrivial graph structure. We realized a coherent quantum walk over 12 steps and 169 positions by using an optical fiber network. With our broad spectrum of quantum coins, we were able to simulate the creation of entanglement in bipartite systems with conditioned interactions. Introducing dynamic control allowed for the investigation of effects such as strong nonlinearities or two-particle scattering. Our results illustrate the potential of quantum walks as a route for simulating and understanding complex quantum systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA