Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Geobiology ; 22(5): 1-30, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39319483

RESUMEN

Whole microorganisms are rarely preserved in the fossil record but actively silicifying environments like hot springs provide an opportunity for microbial preservation, making silicifying environments critical for the study of microbial life through time on Earth and possibly other planetary bodies. Yet, the changes that biosignatures may undergo through lithification and burial remain unconstrained. At Steep Cone Geyser in Yellowstone National Park, we collected microbial material from (1) the living system across the active outflows, (2) the silicified areas adjacent to flows, and (3) lithified and buried material to assess the preservation of biosignatures and their changes across the lithification transect. Five biofabrics, built predominantly by Cyanobacteria Geitlerinema, Pseudanabaenaceae, and Leptolyngbya with some filamentous anoxygenic phototrophs contributions, were identified and tracked from the living system through the process of silicification/lithification. In the living systems, δ30Si values decrease from +0.13‰ in surficial waters to -2‰ in biomat samples, indicating a kinetic isotope effect potentially induced by increased association with actively growing biofabrics. The fatty acids C16:1 and iso-C14:0 and the hydrocarbon C17:0 were disentangled from confounding signals and determined to be reliable lipid biosignatures for living biofabric builders and tenant microorganisms. Builder and tenant microbial biosignatures were linked to specific Cyanobacteria, anoxygenic phototrophs, and heterotrophs, which are prominent members of the living communities. Upon lithification and burial, silicon isotopes of silicified biomass began to re-equilibrate, increasing from δ30Si -2‰ in living biomats to -0.55‰ in lithified samples. Active endolithic microbial communities were identified in lithified samples and were dominated by Cyanobacteria, heterotrophic bacteria, and fungi. Results indicate that distinct microbial communities build and inhabit silicified biofabrics through time and that microbial biosignatures shift over the course of lithification. These findings improve our understanding of how microbial communities silicify, the biomarkers they retain, and transitionary impacts that may occur through lithification and burial.


Asunto(s)
Biomarcadores , Biomarcadores/análisis , Cianobacterias/metabolismo , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Bacterias/metabolismo , Manantiales de Aguas Termales/microbiología , Manantiales de Aguas Termales/química
2.
Proc Natl Acad Sci U S A ; 114(31): 8175-8180, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28720698

RESUMEN

Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric [Formula: see text] on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve 13C-labeled calcites in natural seawater. We show that the time-evolving enrichment of [Formula: see text] in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the 13C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution-precipitation shifts significantly toward a dissolution-dominated mechanism below about [Formula: see text] Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of [Formula: see text] is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid-solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at [Formula: see text], which we interpret as the onset of homogeneous etch pit nucleation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA