Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 11(12)2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30567288

RESUMEN

Nanoparticles can be used in a large variety of applications, including magnetic sensing, biological, superconductivity, tissue engineering, and other fields. In this study, we explore the fabrication of gas phase silver nanoparticles using a sputtering evaporation source. This setup composed of a dual magnetron cluster source holds several advantages over other techniques. The system has independent control over the cluster concentration and a wide range of cluster size and materials that can be used for the clusters and for the matrix where it can be embedded. Characterization of these silver nanoparticles was done using transmission electron microscopy (TEM). We obtain a lateral width of 10.6 nm with a dispersion of 0.24 nm. With atomic force microscopy (AFM) a Gaussian fit of this distribution yields and average height of 6.3 nm with a standard deviation of 1.4 nm. We confirm that the deposited silver nanoparticles have a homogenous area distribution, that they have a defined shape and size distribution, and that they are single standing nanoparticles. Given that the scientific literature is not precise regarding the toxic concentration of the nanoparticles, devices such as ours can help clarify these questions. In order to explore further biological applications, we have done preliminary experiments of cell spreading (myoblast adhesion), obtaining interesting morphological changes correlated with the silver concentration on the surface. With a deposited silver concentration ranging from 100⁻620 ng/cm², the cells showed morphological changes in a short time of 2 h. We conclude that this high precision nanoparticle fabrication technique is adequate for further biological research.

2.
Nat Commun ; 3: 897, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22692540

RESUMEN

Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure.


Asunto(s)
Germanio/química , Nanotecnología/métodos , Microscopía Electrónica de Transmisión de Rastreo
3.
Phys Rev Lett ; 100(23): 236105, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18643522

RESUMEN

The structural and morphological changes occurring in an ensemble of vapor deposited palladium nanoclusters have been studied after several hydrogenation cycles with x-ray diffraction, extended x-ray-absorption fine structure spectroscopy, Rutherford backscattering spectrometry, and STM. Initial hydrogenation increased the cluster size, a result that is attributed to hydrogen-induced Ostwald ripening. This phenomenon originates from the higher mobility of palladium atoms resulting from the low sublimation energy of the palladium hydride as compared to that of the palladium metal. The universality of this phenomenon makes it important for the application of future nanostructured hydrogen storage materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...