Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 69(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38052092

RESUMEN

Objective. To demonstrate the potential of Monte Carlo (MC) to support the resource-intensive measurements that comprise the commissioning of the treatment planning system (TPS) of new proton therapy facilities.Approach. Beam models of a pencil beam scanning system (Varian ProBeam) were developed in GATE (v8.2), Eclipse proton convolution superposition algorithm (v16.1, Varian Medical Systems) and RayStation MC (v12.0.100.0, RaySearch Laboratories), using the beam commissioning data. All models were first benchmarked against the same commissioning data and validated on seven spread-out Bragg peak (SOBP) plans. Then, we explored the use of MC to optimise dose calculation parameters, fully understand the performance and limitations of TPS in homogeneous fields and support the development of patient-specific quality assurance (PSQA) processes. We compared the dose calculations of the TPSs against measurements (DDTPSvs.Meas.) or GATE (DDTPSvs.GATE) for an extensive set of plans of varying complexity. This included homogeneous plans with varying field-size, range, width, and range-shifters (RSs) (n= 46) and PSQA plans for different anatomical sites (n= 11).Main results. The three beam models showed good agreement against the commissioning data, and dose differences of 3.5% and 5% were found for SOBP plans without and with RSs, respectively. DDTPSvs.Meas.and DDTPSvs.GATEwere correlated in most scenarios. In homogeneous fields the Pearson's correlation coefficient was 0.92 and 0.68 for Eclipse and RayStation, respectively. The standard deviation of the differences between GATE and measurements (±0.5% for homogeneous and ±0.8% for PSQA plans) was applied as tolerance when comparing TPSs with GATE. 72% and 60% of the plans were within the GATE predicted dose difference for both TPSs, for homogeneous and PSQA cases, respectively.Significance. Developing and validating a MC beam model early on into the commissioning of new proton therapy facilities can support the validation of the TPS and facilitate comprehensive investigation of its capabilities and limitations.


Asunto(s)
Terapia de Protones , Protones , Humanos , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Benchmarking , Método de Montecarlo , Algoritmos , Cisteamina
2.
Phys Med Biol ; 68(7)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36696694

RESUMEN

Objective. In proton therapy there is a need for proton optimised tissue-equivalent materials as existing phantom materials can produce large uncertainties in the determination of absorbed dose and range measurements. The aim of this work is to develop and characterise optimised tissue-equivalent materials for proton therapy.Approach. A mathematical model was developed to enable the formulation of epoxy-resin based tissue-equivalent materials that are optimised for all relevant interactions of protons with matter, as well as photon interactions, which play a role in the acquisition of CT numbers. This model developed formulations for vertebra bone- and skeletal muscle-equivalent plastic materials. The tissue equivalence of these new materials and commercial bone- and muscle-equivalent plastic materials were theoretical compared against biological tissue compositions. The new materials were manufactured and characterised by their mass density, relative stopping power (RSP) measurements, and CT scans to evaluate their tissue-equivalence.Main results. Results showed that existing tissue-equivalent materials can produce large uncertainties in proton therapy dosimetry. In particular commercial bone materials showed to have a relative difference up to 8% for range. On the contrary, the best optimised formulations were shown to mimic their target human tissues within 1%-2% for the mass density and RSP. Furthermore, their CT-predicted RSP agreed within 1%-2% of the experimental RSP, confirming their suitability as clinical phantom materials.Significance. We have developed a tool for the formulation of tissue-equivalent materials optimised for proton dosimetry. Our model has enabled the development of proton optimised tissue-equivalent materials which perform better than existing tissue-equivalent materials. These new materials will enable the advancement of clinical proton phantoms for accurate proton dosimetry.


Asunto(s)
Terapia de Protones , Humanos , Terapia de Protones/métodos , Protones , Radiometría , Fantasmas de Imagen , Plásticos
3.
Clin Oncol (R Coll Radiol) ; 33(3): e132-e142, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32962907

RESUMEN

AIMS: Pencil beam scanning (PBS) proton therapy is an increasingly used radiation modality for childhood malignancies due to its ability to minimise dose to surrounding organs. However, the dosimetry is extremely sensitive to anatomical and density changes. The aims of this study were to investigate if there is a dosimetric benefit or detriment with PBS for paediatric abdominal neuroblastoma, assess gastrointestinal air variability and its dosimetric consequences, plus identify if there are factors that could assist case selection for PBS referral. MATERIALS AND METHODS: Twenty neuroblastoma cases were double-planned with PBS and intensity-modulated arc therapy (IMAT). Cases were divided into unilateral, midline unilateral and midline bilateral locations in relation to the kidneys. Plans were recalculated after the gastrointestinal volume was simulated as air (Hounsfield Units -700) and water (Hounsfield Units 0), then compared with nominal plans (recalculated - nominal, ΔD). Forty-three weekly cone beam computed tomography scans were analysed to quantify gastrointestinal air variability during treatment. RESULTS: PBS reduced the mean dose to normal tissues at all tumour locations, particularly unilateral tumours. However, 15% had better dosimetry with IMAT, all of which were midline tumours. Increased gastrointestinal air caused significant compromises to PBS versus IMAT plans for midline tumours [median/maximum ΔD95% clinical target volume (CTV) -2.4%/-15.7% PBS versus 1.4%/0% IMAT, P = 0.003], whereas minimal impact was observed for unilateral tumours (ΔD95% CTV -0.5%/-1.9% PBS versus 0.5%/-0.5% IMAT, P = 0.008). D95% CTV was significantly decreased in PBS plans if planning target volume (PTV) ≥400 cm3 (median -4.1%, P = 0.001) or PTV extension ≥60% anterior to vertebral body (-2.1%, P = 0.002). A larger variation in gastrointestinal air was observed in patients treated under general anaesthesia (median 38.4%) versus awake (11.5%); P = 0.004. CONCLUSION: In this planning study, tumours at the unilateral location consistently showed improved dose reductions to normal tissue with minimal dose degradation from increased gastrointestinal air with PBS plans. Tumour location, PTV volume and anterior extension of PTV are useful characteristics in facilitating patient selection for PBS.


Asunto(s)
Neuroblastoma , Terapia de Protones , Radioterapia de Intensidad Modulada , Niño , Colon , Humanos , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/radioterapia , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
4.
Clin Oncol (R Coll Radiol) ; 33(3): e118-e131, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32798157

RESUMEN

AIMS: Twenty per cent of patients with non-small cell lung cancer present with stage III locally advanced disease. Precision radiotherapy with pencil beam scanning (PBS) protons may improve outcomes. However, stage III is a heterogeneous group and accounting for complex tumour motion is challenging. As yet, it remains unclear as to whom will benefit. In our retrospective planning study, we explored if patients with superior sulcus tumours (SSTs) are a select cohort who might benefit from this treatment. MATERIALS AND METHODS: Patients with SSTs treated with radical radiotherapy using four-dimensional planning computed tomography between 2010 and 2015 were identified. Tumour motion was assessed and excluded if greater than 5 mm. Photon volumetric-modulated arc therapy (VMAT) and PBS proton single-field optimisation plans, with and without inhomogeneity corrections, were generated retrospectively. Robustness analysis was assessed for VMAT and PBS plans involving: (i) 5 mm geometric uncertainty, with an additional 3.5% range uncertainty for proton plans; (ii) verification plans at maximal inhalation and exhalation. Comparative dosimetric and robustness analyses were carried out. RESULTS: Ten patients were suitable. The mean clinical target volume D95 was 98.1% ± 0.4 (97.5-98.8) and 98.4% ± 0.2 (98.1-98.9) for PBS and VMAT plans, respectively. All normal tissue tolerances were achieved. The same four PBS and VMAT plans failed robustness assessment. Inhomogeneity corrections minimally impacted proton plan robustness and made it worse in one case. The most important factor affecting target coverage and robustness was the clinical target volume entering the spinal canal. Proton plans significantly reduced the mean lung dose (by 21.9%), lung V5, V10, V20 (by 47.9%, 36.4%, 12.1%, respectively), mean heart dose (by 21.4%) and thoracic vertebra dose (by 29.2%) (P < 0.05). CONCLUSIONS: In this planning study, robust PBS plans were achievable in carefully selected patients. Considerable dose reductions to the lung, heart and thoracic vertebra were possible without compromising target coverage. Sparing these lymphopenia-related organs may be particularly important in this era of immunotherapy.


Asunto(s)
Neoplasias Pulmonares , Terapia de Protones , Radioterapia de Intensidad Modulada , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Órganos en Riesgo , Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
5.
Acta Oncol ; 58(12): 1765-1774, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31429359

RESUMEN

Purpose: Pediatric craniopharyngioma, adult base-of-skull sarcoma and chordoma cases are all regarded as priority candidates for proton therapy. In this study, a dosimetric comparison between volumetric modulated arc therapy (VMAT) and intensity modulated proton therapy (IMPT) was first performed. We then investigated the impact of physical and biological uncertainties. We assessed whether IMPT plans remained dosimetrically superior when such uncertainty estimates were considered, especially with regards to sparing organs at risk (OARs).Methodology: We studied 10 cases: four chondrosarcoma, two chordoma and four pediatric craniopharyngioma. VMAT and IMPT plans were created according to modality-specific protocols. For IMPT, we considered (i) variable RBE modeling using the McNamara model for different values of (α/ß)x, and (ii) robustness analysis with ±3 mm set-up and 3.5% range uncertainties.Results: When comparing the VMAT and IMPT plans, the dosimetric advantages of IMPT were clear: IMPT led to reduced integral dose and, typically, improved CTV coverage given our OAR constraints. When physical robustness analysis was performed for IMPT, some uncertainty scenarios worsened the CTV coverage but not usually beyond that achieved by VMAT. Certain scenarios caused OAR constraints to be exceeded, particularly for the brainstem and optical chiasm. However, variable RBE modeling predicted even more substantial hotspots, especially for low values of (α/ß)x. Variable RBE modeling often prompted dose constraints to be exceeded for critical structures.Conclusion: For base-of-skull and pediatric craniopharyngioma cases, both physical and biological robustness analyses should be considered for IMPT: these analyses can substantially affect the sparing of OARs and comparisons against VMAT. All proton RBE modeling is subject to high levels of uncertainty, but the clinical community should remain cognizant possible RBE effects. Careful clinical and imaging follow-up, plus further research on end-of-range RBE mitigation strategies such as LET optimization, should be prioritized for these cohorts of proton patients.


Asunto(s)
Cordoma/radioterapia , Craneofaringioma/radioterapia , Órganos en Riesgo/efectos de la radiación , Neoplasias Hipofisarias/radioterapia , Radioterapia de Intensidad Modulada/métodos , Sarcoma/radioterapia , Neoplasias de la Base del Cráneo/radioterapia , Adulto , Tronco Encefálico/efectos de la radiación , Niño , Humanos , Transferencia Lineal de Energía , Quiasma Óptico/efectos de la radiación , Nervio Óptico/efectos de la radiación , Traumatismos por Radiación/prevención & control , Dosificación Radioterapéutica , Efectividad Biológica Relativa , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...