Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharmacol ; 97(6): 355-364, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32241959

RESUMEN

Voltage-gated potassium 11.1 (Kv11.1) channels play a critical role in repolarization of cardiomyocytes during the cardiac action potential (AP). Drug-mediated Kv11.1 blockade results in AP prolongation, which poses an increased risk of sudden cardiac death. Many drugs, like pentamidine, interfere with normal Kv11.1 forward trafficking and thus reduce functional Kv11.1 channel densities. Although class III antiarrhythmics, e.g., dofetilide, rescue congenital and acquired forward trafficking defects, this is of little use because of their simultaneous acute channel blocking effect. We aimed to test the ability of a combination of dofetilide plus LUF7244, a Kv11.1 allosteric modulator/activator, to rescue Kv11.1 trafficking and produce functional Kv11.1 current. LUF7244 treatment by itself did not disturb or rescue wild type (WT) or G601S-Kv11.1 trafficking, as shown by Western blot and immunofluorescence microcopy analysis. Pentamidine-decreased maturation of WT Kv11.1 levels was rescued by 10 µM dofetilide or 10 µM dofetilide + 5 µM LUF7244. In trafficking defective G601S-Kv11.1 cells, dofetilide (10 µM) or dofetilide + LUF7244 (10 + 5 µM) also restored Kv11.1 trafficking, as demonstrated by Western blot and immunofluorescence microscopy. LUF7244 (10 µM) increased IKv 11.1 despite the presence of dofetilide (1 µM) in WT Kv11.1 cells. In G601S-expressing cells, long-term treatment (24-48 hour) with LUF7244 (10 µM) and dofetilide (1 µM) increased IKv11.1 compared with nontreated or acutely treated cells. We conclude that dofetilide plus LUF7244 rescues Kv11.1 trafficking and produces functional IKv11.1 Thus, combined administration of LUF7244 and an IKv11.1 trafficking corrector could serve as a new pharmacological therapy of both congenital and drug-induced Kv11.1 trafficking defects. SIGNIFICANCE STATEMENT: Decreased levels of functional Kv11.1 potassium channel at the plasma membrane of cardiomyocytes prolongs action potential repolarization, which associates with cardiac arrhythmia. Defective forward trafficking of Kv11.1 channel protein is an important factor in acquired and congenital long QT syndrome. LUF7244 as a negative allosteric modulator/activator in combination with dofetilide corrected both congenital and acquired Kv11.1 trafficking defects, resulting in functional Kv11.1 current.


Asunto(s)
Antiarrítmicos/farmacología , Canal de Potasio ERG1/efectos de los fármacos , Compuestos Orgánicos/farmacología , Fenetilaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Sulfonamidas/farmacología , Potenciales de Acción/efectos de los fármacos , Antiarrítmicos/química , Western Blotting , Simulación por Computador , Sinergismo Farmacológico , Canal de Potasio ERG1/fisiología , Células HEK293 , Humanos , Microscopía Fluorescente , Modelos Moleculares , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Compuestos Orgánicos/química , Fenetilaminas/química , Bloqueadores de los Canales de Potasio/química , Piridinas , Sulfonamidas/química
2.
Front Physiol ; 10: 863, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333502

RESUMEN

KIR2.1 potassium channels, producing inward rectifier potassium current (I K1 ), are important for final action potential repolarization and a stable resting membrane potential in excitable cells like cardiomyocytes. Abnormal KIR2.1 function, either decreased or increased, associates with diseases such as Andersen-Tawil syndrome, long and short QT syndromes. KIR2.1 ion channel protein trafficking and subcellular anchoring depends on intrinsic specific short amino acid sequences. We hypothesized that combining an evolutionary based sequence comparison and bioinformatics will identify new functional domains within the C-terminus of the KIR2.1 protein, which function could be determined by mutation analysis. We determined PEST domain signatures, rich in proline (P), glutamic acid (E), serine (S), and threonine (T), within KIR2.1 sequences using the "epestfind" webtool. WT and ΔPEST KIR2.1 channels were expressed in HEK293T and COS-7 cells. Patch-clamp electrophysiology measurements were performed in the inside-out mode on excised membrane patches and the whole cell mode using AxonPatch 200B amplifiers. KIR2.1 protein expression levels were determined by western blot analysis. Immunofluorescence microscopy was used to determine KIR2.1 subcellular localization. An evolutionary conserved PEST domain was identified in the C-terminus of the KIR2.1 channel protein displaying positive PEST scores in vertebrates ranging from fish to human. No similar PEST domain was detected in KIR2.2, KIR2.3, and KIR2.6 proteins. Deletion of the PEST domain in California kingsnake and human KIR2.1 proteins (ΔPEST), did not affect plasma membrane localization. Co-expression of WT and ΔPEST KIR2.1 proteins resulted in heterotetrameric channel formation. Deletion of the PEST domain did not increase protein stability in cycloheximide assays [T½ from 2.64 h (WT) to 1.67 h (ΔPEST), n.s.]. WT and ΔPEST channels, either from human or snake, produced typical I K1 , however, human ΔPEST channels displayed stronger intrinsic rectification. The current observations suggest that the PEST sequence of KIR2.1 is not associated with rapid protein degradation, and has a role in the rectification behavior of I K1 channels.

3.
J Biomed Sci ; 24(1): 44, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28711067

RESUMEN

BACKGROUND: The inward rectifier potassium current IK1 contributes to a stable resting membrane potential and phase 3 repolarization of the cardiac action potential. KCNJ2 gain-of-function mutations V93I and D172N associate with increased IK1, short QT syndrome type 3 and congenital atrial fibrillation. Pentamidine-Analogue 6 (PA-6) is an efficient (IC50 = 14 nM with inside-out patch clamp methodology) and specific IK1 inhibitor that interacts with the cytoplasmic pore region of the KIR2.1 ion channel, encoded by KCNJ2. At 10 µM, PA-6 increases wild-type (WT) KIR2.1 expression in HEK293T cells upon chronic treatment. We hypothesized that PA-6 will interact with and inhibit V93I and D172N KIR2.1 channels, whereas impact on channel expression at the plasma membrane requires higher concentrations. METHODS: Molecular modelling was performed with the human KIR2.1 closed state homology model using FlexX. WT and mutant KIR2.1 channels were expressed in HEK293 cells. Patch-clamp single cell electrophysiology measurements were performed in the whole cell and inside-out mode of the patch clamp method. KIR2.1 expression level and localization were determined by western blot analysis and immunofluorescence microscopy, respectively. RESULTS: PA-6 docking in the V93I/D172N double mutant homology model of KIR2.1 demonstrated that mutations and drug-binding site are >30 Å apart. PA-6 inhibited WT and V93I outward currents with similar potency (IC50 = 35.5 and 43.6 nM at +50 mV for WT and V93I), whereas D172N currents were less sensitive (IC50 = 128.9 nM at +50 mV) using inside-out patch-clamp electrophysiology. In whole cell mode, 1 µM of PA-6 inhibited outward IK1 at -50 mV by 28 ± 36%, 18 ± 20% and 10 ± 6%, for WT, V93I and D172N channels respectively. Western blot analysis demonstrated that PA-6 (5 µM, 24 h) increased KIR2.1 expression levels of WT (6.3 ± 1.5 fold), and V93I (3.9 ± 0.9) and D172N (4.8 ± 2.0) mutants. Immunofluorescent microscopy demonstrated dose-dependent intracellular KIR2.1 accumulation following chronic PA-6 application (24 h, 1 and 5 µM). CONCLUSIONS: 1) KCNJ2 gain-of-function mutations V93I and D172N in the KIR2.1 ion channel do not impair PA-6 mediated inhibition of IK1, 2) PA-6 elevates KIR2.1 protein expression and induces intracellular KIR2.1 accumulation, 3) PA-6 is a strong candidate for further preclinical evaluation in treatment of congenital SQT3 and AF.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Pentamidina/análogos & derivados , Pentamidina/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/genética , Potenciales de Acción , Células HEK293 , Humanos , Potenciales de la Membrana , Simulación del Acoplamiento Molecular , Pentamidina/química , Bloqueadores de los Canales de Potasio/química , Canales de Potasio de Rectificación Interna/metabolismo
4.
J Cell Mol Med ; 21(10): 2514-2523, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28425222

RESUMEN

Drug-induced ion channel trafficking disturbance can cause cardiac arrhythmias. The subcellular level at which drugs interfere in trafficking pathways is largely unknown. KIR 2.1 inward rectifier channels, largely responsible for the cardiac inward rectifier current (IK1 ), are degraded in lysosomes. Amiodarone and dronedarone are class III antiarrhythmics. Chronic use of amiodarone, and to a lesser extent dronedarone, causes serious adverse effects to several organs and tissue types, including the heart. Both drugs have been described to interfere in the late-endosome/lysosome system. Here we defined the potential interference in KIR 2.1 backward trafficking by amiodarone and dronedarone. Both drugs inhibited IK1 in isolated rabbit ventricular cardiomyocytes at supraclinical doses only. In HK-KWGF cells, both drugs dose- and time-dependently increased KIR 2.1 expression (2.0 ± 0.2-fold with amiodarone: 10 µM, 24 hrs; 2.3 ± 0.3-fold with dronedarone: 5 µM, 24 hrs) and late-endosomal/lysosomal KIR 2.1 accumulation. Increased KIR 2.1 expression level was also observed in the presence of Nav 1.5 co-expression. Augmented KIR 2.1 protein levels and intracellular accumulation were also observed in COS-7, END-2, MES-1 and EPI-7 cells. Both drugs had no effect on Kv 11.1 ion channel protein expression levels. Finally, amiodarone (73.3 ± 10.3% P < 0.05 at -120 mV, 5 µM) enhanced IKIR2.1 upon 24-hrs treatment, whereas dronedarone tended to increase IKIR2.1 and it did not reach significance (43.8 ± 5.5%, P = 0.26 at -120 mV; 2 µM). We conclude that chronic amiodarone, and potentially also dronedarone, treatment can result in enhanced IK1 by inhibiting KIR 2.1 degradation.


Asunto(s)
Amiodarona/análogos & derivados , Amiodarona/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canales de Potasio de Rectificación Interna/fisiología , Animales , Antiarrítmicos/farmacología , Células COS , Línea Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Dronedarona , Células HEK293 , Humanos , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Canales de Potasio de Rectificación Interna/genética , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...