Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36678715

RESUMEN

Liposomes can increase plasma half-life, enhance targeting, and diminish the side-effects of loaded drugs. On the downside, physical and chemical instabilities of dispersions often result in a reduced lifespan, which limits their availability on the market. Solid formulations obtained by freeze-drying can immobilize vesicles and provide extended shelf life. For both processes, the choice of excipients and process parameters are crucial to protect the carrier layers against tension caused by freezing and/or dehydration. The aim of this work is to evaluate the influence of freezing and drying parameters, besides excipient choice, to obtain solid long-circulating and fusogenic liposomes (LCFL-PTX/DXR) co-encapsulating paclitaxel (PTX) and doxorubicin (DXR) at a synergistic ratio (1:10). METHODS: LCFL-PTX/DXR was evaluated by freeze-drying microscopy (glass transition, Tg'), differential scanning calorimetry (collapse temperature, Tc), freeze-thawing and freeze-drying processes. Freeze-dried samples were evaluated by thermogravimetry (residual moisture) and the resuspended liposomes were characterized in terms of size, polydispersity index (PI), zeta potential (ZP), and drug content. Liposomes morphology was evaluated by cryomicroscopy. RESULTS: Trehalose protected PTX cargo upon freeze-thawing and more than 80% of the original DXR retention. The formulations with trehalose resulted in a cake with 5-7% of moisture content (200-240 nm); 44-60% of PTX retention, and 25-35% of DXR retention, with the variations caused by cryoprotector concentration and process changes. CONCLUSIONS: Trehalose protected liposome integrity, maintaining PTX retention and most of DXR upon freeze-thawing. Freeze-drying reduced the retention of both drugs inside all liposomes, whereas formulation with trehalose presented minor losses. Therefore, this frozen formulation is an alternative product option, with no need for manipulation before use.

2.
Biomed Pharmacother ; 144: 112307, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34653762

RESUMEN

Combination therapy between paclitaxel (PTX) and doxorubicin (DXR) is applied as the first-line treatment of breast cancer. Co-administration of drugs at synergistic ratio for treatment is facilitated with the use of nanocarriers, such as liposomes. However, despite the high response rate of solid tumors to this combination, a synergism of cardiotoxicity may limit the use. Thus, the objective of this work was to investigate the toxicity of long-circulating and fusogenic liposomes co-encapsulating PTX and DXR at the synergistic molar ratio (1:10) (LCFL-PTX/DXR). For this, clinical chemistry, histopathological analysis and electrocardiographic exams were performed on female Balb/c mice that received a single intravenous dose of LCFL-PTX/DXR. The results of the study indicated that the LD50 dose range (lethal dose for 50% of animals) of the LCFL-PTX/DXR treatment (28.9-34.7 mg/kg) is much higher than that found for free PTX/DXR treatment (20.8-23.1 mg/kg). In addition, liposomes promoted cardiac protection by not raising CK-MB levels in animals, keeping cardiomyocytes without injury or electrocardiographic changes. After 14 days of treatment, free PTX/DXR caused prolongation of the QRS interval when compared to LCFL-PTX/DXR treatment at the same dose (37.0 ± 5.01 ms and 30.83 ± 2.62 ms, respectively, with p = 0.017). The survival rate of animals treated with LCFL-PTX/DXR was three times higher than that of those treated with free drugs. Thus, it was established that the toxicity of LCFL-PTX/DXR is reduced compared to the combination of free PTX/DXR and this platform has advantages for the clinical treatment of breast cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/toxicidad , Doxorrubicina/toxicidad , Cardiopatías/inducido químicamente , Lípidos/química , Miocitos Cardíacos/efectos de los fármacos , Paclitaxel/toxicidad , Potenciales de Acción/efectos de los fármacos , Administración Intravenosa , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/química , Cardiotoxicidad , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Composición de Medicamentos , Sinergismo Farmacológico , Electrocardiografía , Femenino , Cardiopatías/metabolismo , Cardiopatías/patología , Dosificación Letal Mediana , Liposomas , Ratones Endogámicos BALB C , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Paclitaxel/administración & dosificación , Paclitaxel/química
3.
Biomed Pharmacother ; 142: 112000, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34426249

RESUMEN

The main goal of this study is to evaluate the efficacy of the paclitaxel (PTX) drug formulated with a liposomal nanosystem (L-PTX) in a peritoneal carcinomatosis derived from ovarian cancer. In vitro cell viability studies with the human ovarian cancer line A2780 showed a 50% decrease in the inhibitory concentration for L-PTX compared to free PTX. A2780 cells treated with the L-PTX formulation demonstrated a reduced capacity to form colonies in comparison to those treated with PTX. Cell death following L-PTX administration hinted at apoptosis, with most cells undergoing initial apoptosis. A2780 cells exhibited an inhibitory migration profile when analyzed by Wound Healing and real-time cell analysis (xCELLigence) methods after L-PTX administration. This inhibition was related to decreased expression of the zinc finger E-box-binding homeobox 1 (ZEB1) and transforming growth factor 2 (TGF-ß2) genes. In vivoL-PTX administration strongly inhibited tumor cell proliferation in ovarian peritoneal carcinomatosis derived from ovarian cancer, indicating higher antitumor activity than PTX. L-PTX formulation did not show toxicity in the mice model. This study demonstrated that liposomal paclitaxel formulations are less toxic to normal tissues than free paclitaxel and are more effective in inhibiting tumor cell proliferation/migration and inducing ZEB1/TGF-ß2 gene expression.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/farmacología , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Apoptosis/efectos de los fármacos , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Liposomas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Paclitaxel/administración & dosificación , Neoplasias Peritoneales/tratamiento farmacológico
4.
Front Oncol ; 11: 623760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796461

RESUMEN

Since more than 40 years liposomes have being extensively studied for their potential as carriers of anticancer drugs. The basic principle behind their use for cancer treatment consists on the idea that they can take advantage of the leaky vasculature and poor lymphatic drainage present at the tumor tissue, passively accumulating in this region. Aiming to further improve their efficacy, different strategies have been employed such as PEGlation, which enables longer circulation times, or the attachment of ligands to liposomal surface for active targeting of cancer cells. A great challenge for drug delivery to cancer treatment now, is the possibility to trigger release from nanosystems at the tumor site, providing efficacious levels of drug in the tumor. Different strategies have been proposed to exploit the outer and inner tumor environment for triggering drug release from liposomes and are the focus of this review.

5.
Nanomedicine (Lond) ; 15(28): 2753-2770, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33179587

RESUMEN

Aim: To investigate the effect of liposomes containing the classical cytotoxic drugs paclitaxel and doxorubicin (Lipo-Pacli/Dox), against a metastatic breast cancer model. We also investigated if Lipo-Pacli/Dox was capable of reverting the tolerogenic environment of metastatic lesions. Materials & methods: Immunogenic cell death induction by the Pacli/Dox combination was assessed in vitro. Antitumor activity and in vivo safety of Lipo-Pacli/Dox were evaluated using a 4T1 breast cancer mouse model Results: Lipo-Pacli/Dox, with a size of 189 nm and zeta potential of -5.01 mV, promoted immune system activation and partially controlled the progression of pulmonary metastasis. Conclusion: Lipo-Pacli/Dox was useful to control both primary tumor and lung metastasis in breast cancer (4T1) mice model. Additionally, Lipo-Pacli/Dox acts as an immunological modulator for this metastatic breast cancer model.


Asunto(s)
Liposomas , Neoplasias Pulmonares , Animales , Antibióticos Antineoplásicos , Línea Celular Tumoral , Doxorrubicina , Neoplasias Pulmonares/tratamiento farmacológico , Linfocitos , Ratones , Ratones Endogámicos BALB C , Paclitaxel , Pronóstico
6.
Parasitol Res ; 119(8): 2609-2622, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32535734

RESUMEN

The treatment against visceral leishmaniasis (VL) presents problems, mainly related to the toxicity and/or high cost of the drugs. In this context, a prophylactic vaccination is urgently required. In the present study, a Leishmania protein called LiHyE, which was suggested recently as an antigenic marker for canine and human VL, was evaluated regarding its immunogenicity and protective efficacy in BALB/c mice against Leishmania infantum infection. In addition, the protein was used to stimulate peripheral blood mononuclear cells (PBMCs) from VL patients before and after treatment, as well as from healthy subjects. Vaccination results showed that the recombinant (rLiHyE) protein associated with liposome or saponin induced effective protection in the mice, since significant reductions in the parasite load in spleen, liver, draining lymph nodes, and bone marrow were found. The parasitological protection was associated with Th1-type cell response, since high IFN-γ, IL-12, and GM-CSF levels, in addition to low IL-4 and IL-10 production, were found. Liposome induced a better parasitological and immunological protection than did saponin. Experiments using PBMCs showed rLiHyE-stimulated lymphoproliferation in treated patients' and healthy subjects' cells, as well as high IFN-γ levels in the cell supernatant. In conclusion, rLiHyE could be considered for future studies as a vaccine candidate against VL.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos de Protozoos/administración & dosificación , Leishmania infantum/inmunología , Leishmaniasis Visceral/prevención & control , Animales , Antígenos de Protozoos/inmunología , Femenino , Humanos , Inmunogenicidad Vacunal , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Leucocitos Mononucleares/inmunología , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Células TH1/inmunología , Vacunación
7.
Cytokine ; 129: 155031, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32062145

RESUMEN

The control measures against visceral leishmaniasis (VL) include a precise diagnosis of disease, the treatment of human cases, and reservoir and vector controls. However, these are insufficient to avoid the spread of the disease in specific countries worldwide. As a consequence, prophylactic vaccination could be interesting, although no effective candidate against human disease is available. In the present study, the Leishmania infantum amastin protein was evaluated regarding its immunogenicity and protective efficacy against experimental VL. BALB/c mice immunized with subcutaneous injections of the recombinant protein with or without liposome/saponin (Lip/Sap) as an adjuvant. After immunization, half of the animals per group were euthanized and immunological evaluations were performed, while the others were challenged with L. infantum promastigotes. Forty-five days after infection, the animals were euthanized and parasitological and immunological evaluations were performed. Results showed the development of a Th1-type immune response in rAmastin-Lip and rAmastin-Sap/vaccinated mice, before and after infection, which was based on the production of protein and parasite-specific IFN-γ, IL-12, GM-CSF, and nitrite, as well as the IgG2a isotype antibody. CD4+ T cells were mainly responsible for IFN-γ production in vaccinated mice, which also presented significant reductions in parasitism in their liver, spleen, draining lymph nodes, and bone marrow. In addition, PBMC cultures of treated VL patients and healthy subjects stimulated with rAmastin showed lymphoproliferation and higher IFN-γ production. In conclusion, the present study shows the first case of an L. infantum amastin protein associated with distinct delivery systems inducing protection against L. infantum infection and demonstrates an immunogenic effect of this protein in human cells.


Asunto(s)
Leishmania infantum/inmunología , Leishmaniasis Visceral/inmunología , Proteínas Protozoarias/inmunología , Adyuvantes Inmunológicos/farmacología , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/parasitología , Células Cultivadas , Femenino , Humanos , Inmunidad/inmunología , Interferón gamma/inmunología , Leishmaniasis Visceral/parasitología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/parasitología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/parasitología , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/inmunología , Células TH1/inmunología , Células TH1/parasitología
8.
Curr Drug Deliv ; 16(9): 829-838, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31622204

RESUMEN

BACKGROUND: The co-encapsulation of paclitaxel (PTX) and doxorubicin (DXR) in liposomes has the potential to offer pharmacokinetic and pharmacodynamic advantages, providing delivery of both drugs to the tumor at the ratio required for synergism. OBJECTIVE: To prepare and characterize long-circulating and fusogenic liposomes co-encapsulating PTX and DXR in the 1:10 molar ratio (LCFL-PTX/DXR). METHODS: LCFL-PTX/DXR was prepared by the lipid film formation method. The release of PTX and DXR from liposomes was performed using a dialysis method. Studies of cytotoxicity, synergism, and cellular uptake were also carried out. RESULTS: The encapsulation percentage of PTX and DXR was 74.1 ± 1.8 % and 89.6 ± 12.3%, respectively, and the mean diameter of the liposomes was 244.4 ± 28.1 nm. The vesicles remained stable for 30 days after their preparation. The drugs were simultaneously released from vesicles during 36 hours, maintaining the drugs combination in the previously established ratio. Cytotoxicity studies using 4T1 breast cancer cells showed lower inhibitory concentration 50% (IC50) value for LCFL-PTX/DXR treatment (0.27 ± 0.11 µm) compared to the values of free drugs treatment. In addition, the combination index (CI) assessed for treatment with LCFL-PTX/DXR was equal to 0.11 ± 0.04, showing strong synergism between the drugs. Cell uptake studies have confirmed that the molar ratio between PTX and DXR is maintained when the drugs are administered in liposomes. CONCLUSION: It was possible to obtain LCFL-PTX/DXR suitable for intravenous administration, capable of releasing the drugs in a fixed synergistic molar ratio in the tumor region.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Antineoplásicos Fitogénicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Paclitaxel/administración & dosificación , Animales , Antibióticos Antineoplásicos/química , Antineoplásicos Fitogénicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Liberación de Fármacos , Liposomas , Ratones , Paclitaxel/química
9.
Pharmaceutics ; 11(4)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30979090

RESUMEN

BACKGROUND: Associating paclitaxel (PTX) to doxorubicin (DXR) is one of the main chemotherapy strategies for breast cancer (BC) management. Protocols currently available consist in administering both drugs on their maximum tolerated dose, not taking into account the possible differences in efficacy due to their combination ratio. In the present study, the short and long-term cytotoxic effects as well as migratory effects of PTX, DXR, and its combinations at 10:1; 1:1 and 1:10 PTX:DXR molar ratios either free or co-encapsulated in liposomes were evaluated against three human BC cell lines (MDA-MB-231, MCF-7, and SKBR-3). METHOD: The MTT assay was used to screen for synergy or antagonism between PTX and DXR and the combination index value was calculated using the CalcuSyn software. Nuclear morphological alterations were evaluated by staining the cells with Hoescht 33342. The investigation of senescence and clonogenicity of BC cell lines exposed to different treatments was also studied. In addition, the ability of these cells to migrate was assessed. RESULTS: Taken together, the results presented herein allow us to suggest that there is no benefit in enhancing the PTX concentration above that of DXR in the combination for any of the three cell lines tested. CONCLUSION: The developed liposomes co-encapsulating PTX and DXR in different molar ratios retained the biological properties of the mixture of free drugs and are valuable for planning new therapeutic strategies.

10.
Biomed Pharmacother ; 109: 1728-1739, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30551427

RESUMEN

To associate paclitaxel (PTX) with doxorubicin (DXR) is one of the main chemotherapy strategies for breast cancer (BC) management. Despite the high response rates for this combination, it presents a cardiotoxic synergism, attributed to pharmacokinetic interactions between PTX and both DXR and its metabolite, doxorubicinol. One of the main strategies to minimize the cardiotoxicity of the combination is to extend the interval of time between DXR and PTX administration. However, it has been previously suggested that their co-administration leads to better efficacy compared to their sequential administration. In the present study, we investigated different molar ratio combinations of PTX:DXR (10:1; 1:1, and 1:10) against the 4T1 murine breast cancer cell line and concluded that there is no benefit of enhancing PTX concentration above that of DXR on the combination. Therefore, we obtained a long-circulating and fusogenic liposomal formulation co-encapsulating PTX and DXR (LCFL-PTX/DXR) at a molar ratio of 1:10, respectively, which maintained the in vitro biological activity of the combination. This formulation was investigated for its antitumor activity and toxicity in Balb/c mice bearing 4T1 breast tumor, and compared to treatments with free PTX, free DXR, and the mixture of free PTX:DXR at 1:10 molar ratio. The higher tumor inhibition ratios were observed for the treatments with free and co-encapsulated PTX:DXR in liposomes (66.87 and 66.52%, respectively, P>0.05) as compared to the control. The great advantage of the treatment with LCFL-PTX/DXR was its improved cardiac toxicity profile. While degeneration was observed in the hearts of all animals treated with the free PTX:DXR combination, no signs of cardiac toxicity were observed for animals treated with the LCFL-PTX/DXR. Thus, LCFL-PTX/DXR enables the co-administration of PTX and DXR, and might be considered valuable for breast cancer management.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Paclitaxel/administración & dosificación , Animales , Antibióticos Antineoplásicos/toxicidad , Antineoplásicos Fitogénicos/toxicidad , Neoplasias de la Mama/patología , Cardiotoxicidad/patología , Relación Dosis-Respuesta a Droga , Doxorrubicina/toxicidad , Portadores de Fármacos/toxicidad , Femenino , Humanos , Liposomas , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Paclitaxel/toxicidad , Distribución Aleatoria , Carga Tumoral/efectos de los fármacos , Carga Tumoral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA