Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 33846, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27659038

RESUMEN

Dengue, chikungunya and zika viruses are pathogens with an increasing global impact. In the absence of an approved vaccine or therapy, their management relies on controlling the mosquito vectors. But traditional controls are inadequate, and the range of invasive species such as Aedes albopictus (Asian Tiger Mosquito) is expanding. Genetically modified mosquitoes are being tested, but their use has encountered regulatory barriers and public opposition in some countries. Wolbachia bacteria can cause a form of conditional sterility, which can provide an alternative to genetic modification or irradiation. It is unknown however, whether openly released, artificially infected male Ae. albopictus can competitively mate and sterilize females at a level adequate to suppress a field population. Also, the unintended establishment of Wolbachia at the introduction site could result from horizontal transmission or inadvertent female release. In 2014, an Experimental Use Permit from the United States Environmental Protection Agency approved a pilot field trial in Lexington, Kentucky, USA. Here, we present data showing localized reduction of both egg hatch and adult female numbers. The artificial Wolbachia type was not observed to establish in the field. The results are discussed in relation to the applied use of Wolbachia-infected males as a biopesticide to suppress field populations of Ae. albopictus.

3.
PLoS One ; 6(9): e24110, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21931649

RESUMEN

Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT)--mass-release of sterile insects to mate with, and thereby control, their wild counterparts--has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field--ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area--were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests.


Asunto(s)
Animales Modificados Genéticamente/genética , Ingeniería Genética/métodos , Mariposas Nocturnas/genética , Control Biológico de Vectores/métodos , Animales , Animales Modificados Genéticamente/metabolismo , Femenino , Humanos , Infertilidad/genética , Infertilidad/fisiopatología , Modelos Logísticos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Microscopía Fluorescente , Mariposas Nocturnas/metabolismo , Reproducibilidad de los Resultados , Conducta Sexual Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA