Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Mol Neurodegener ; 10: 5, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25887709

RESUMEN

BACKGROUND: Toll-like receptors (TLR) constitute a highly conserved class of receptors through which the innate immune system responds to both pathogen- and host-derived factors. Although TLRs are involved in a wide range of central nervous system (CNS) disorders including neurodegenerative diseases, the molecular events leading from CNS injury to activation of these innate immune receptors remain elusive. The stress protein heat shock protein 60 (HSP60) released from injured cells is considered an endogenous danger signal of the immune system. In this context, the main objective of the present study was to investigate the impact of extracellular HSP60 on the brain in vivo. RESULTS: We show here that HSP60 injected intrathecally causes neuronal and oligodendrocyte injury in the CNS in vivo through TLR4-dependent signaling. Intrathecal HSP60 results in neuronal cell death, axonal injury, loss of oligodendrocytes, and demyelination in the cerebral cortex of wild-type mice. In contrast both mice lacking TLR4 and the TLR adaptor molecule MyD88 are protected against deleterious effects induced by HSP60. In contrast to the exogenous TLR4 ligand, lipopolysaccharide, intrathecal HSP60 does not induce such a considerable inflammatory response in the brain. In the CNS, endogenous HSP60 is predominantly expressed in neurons and released during brain injury, since the cerebrospinal fluid (CSF) from animals of a mouse stroke model contains elevated levels of this stress protein compared to the CSF of sham-operated mice. CONCLUSIONS: Our data show a direct toxic effect of HSP60 towards neurons and oligodendrocytes in the CNS. The fact that these harmful effects involve TLR4 and MyD88 confirms a molecular pathway mediated by the release of endogenous TLR ligands from injured CNS cells common to many forms of brain diseases that bi-directionally links CNS injury and activation of the innate immune system to neurodegeneration and demyelination in vivo.


Asunto(s)
Sistema Nervioso Central/metabolismo , Chaperonina 60/metabolismo , Enfermedades Desmielinizantes/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo , Animales , Muerte Celular , Células Cultivadas , Chaperonina 60/farmacología , Ratones Endogámicos C57BL , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Receptores Inmunológicos/metabolismo
3.
J Clin Invest ; 125(2): 699-714, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25607842

RESUMEN

A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell-mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4-producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4-deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4-deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell-derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4-producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration.


Asunto(s)
Axones/inmunología , Lesiones Encefálicas/inmunología , Linfocitos T CD4-Positivos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Interleucina-4/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Enfermedades Neurodegenerativas/inmunología , Animales , Axones/patología , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Linfocitos T CD4-Positivos/patología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Interleucina-4/genética , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología
4.
J Neuroinflammation ; 11: 166, 2014 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-25239168

RESUMEN

BACKGROUND: Toll-like receptors (TLRs) enable innate immune cells to respond to pathogen- and host-derived molecules. The central nervous system (CNS) exhibits most of the TLRs identified with predominant expression in microglia, the major immune cells of the brain. Although individual TLRs have been shown to contribute to CNS disorders, the consequences of multiple activated TLRs on the brain are unclear. We therefore systematically investigated and compared the impact of sole and pairwise TLR activation on CNS inflammation and injury. METHODS: Selected TLRs expressed in microglia and neurons were stimulated with their specific TLR ligands in varying combinations. Cell cultures were then analyzed by immunocytochemistry, FlowCytomix, and ELISA. To determine neuronal injury and neuroinflammation in vivo, C57BL/6J mice were injected intrathecally with TLR agonists. Subsequently, brain sections were analyzed by quantitative real-time PCR and immunohistochemistry. RESULTS: Simultaneous stimulation of TLR4 plus TLR2, TLR4 plus TLR9, and TLR2 plus TLR9 in microglia by their respective specific ligands results in an increased inflammatory response compared to activation of the respective single TLR in vitro. In contrast, additional activation of TLR7 suppresses the inflammatory response mediated by the respective ligands for TLR2, TLR4, or TLR9 up to 24 h, indicating that specific combinations of activated TLRs individually modulate the inflammatory response. Accordingly, the composition of the inflammatory response pattern generated by microglia varies depending on the identity and combination of the activated TLRs engaged. Likewise, neuronal injury occurs in response to activation of only selected TLRs and TLR combinations in vitro. Activation of TLR2, TLR4, TLR7, and TLR9 in the brain by intrathecal injection of the respective TLR ligand into C57BL/6J mice leads to specific expression patterns of distinct TLR mRNAs in the brain and causes influx of leukocytes and inflammatory mediators into the cerebrospinal fluid to a variable extent. Also, the intensity of the inflammatory response and neurodegenerative effects differs according to the respective activated TLR and TLR combinations used in vivo. CONCLUSIONS: Sole and pairwise activation of TLRs modifies the pattern and extent of inflammation and neurodegeneration in the CNS, thereby enabling innate immunity to take account of the CNS diseases' diversity.


Asunto(s)
Citocinas/metabolismo , Encefalitis/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Aminoquinolinas/toxicidad , Animales , Células Cultivadas , Chaperonina 60/farmacología , Encefalitis/líquido cefalorraquídeo , Encefalitis/inducido químicamente , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Imiquimod , Lipopéptidos/toxicidad , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Enfermedades Neurodegenerativas/líquido cefalorraquídeo , Enfermedades Neurodegenerativas/inducido químicamente , Neuronas/efectos de los fármacos , Óxido Nítrico/metabolismo , Oligodesoxirribonucleótidos/toxicidad , Fosfopiruvato Hidratasa/metabolismo , Receptor Toll-Like 4/deficiencia
5.
Cereb Cortex ; 24(1): 199-210, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23042740

RESUMEN

Central nervous system (CNS) inflammation involves the generation of inducible cytokines such as interferons (IFNs) and alterations in brain activity, yet the interplay of both is not well understood. Here, we show that in vivo elevation of IFNs by viral brain infection reduced hyperpolarization-activated currents (Ih) in cortical pyramidal neurons. In rodent brain slices directly exposed to type I IFNs, the hyperpolarization-activated cyclic nucleotide (HCN)-gated channel subunit HCN1 was specifically affected. The effect required an intact type I receptor (IFNAR) signaling cascade. Consistent with Ih inhibition, IFNs hyperpolarized the resting membrane potential, shifted the resonance frequency, and increased the membrane impedance. In vivo application of IFN-ß to the rat and to the mouse cerebral cortex reduced the power of higher frequencies in the cortical electroencephalographic activity only in the presence of HCN1. In summary, these findings identify HCN1 channels as a novel neural target for type I IFNs providing the possibility to tune neural responses during the complex event of a CNS inflammation.


Asunto(s)
Corteza Cerebral/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Interferón Tipo I/fisiología , Neuronas/fisiología , Canales de Potasio/fisiología , Animales , Western Blotting , Corteza Cerebral/citología , Simulación por Computador , Citocinas/fisiología , Electroencefalografía , Fenómenos Electrofisiológicos/fisiología , Células HEK293 , Humanos , Inmunohistoquímica , Interferón Tipo I/biosíntesis , Interferón beta/farmacología , Masculino , Ratones Endogámicos C57BL , Neocórtex/citología , Neocórtex/metabolismo , Neocórtex/fisiología , Red Nerviosa/citología , Red Nerviosa/fisiología , Técnicas de Placa-Clamp , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Interferón/fisiología , Transducción de Señal/fisiología , Transfección
6.
J Neuroinflammation ; 10: 6, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23317037

RESUMEN

Precise crosstalk between the nervous and immune systems is important for neuroprotection and axon plasticity after injury. Recently, we demonstrated that IL-1ß acts as a potent inducer of neurite outgrowth from organotypic brain slices in vitro, suggesting a potential function of IL-1ß in axonal plasticity. Here, we have investigated the effects of IL-1ß on axon plasticity during glial scar formation and on functional recovery in a mouse model of spinal cord compression injury (SCI). We used an IL-1ß deficiency model (IL-1ßKO mice) and administered recombinant IL-1ß. In contrast to our hypothesis, the histological analysis revealed a significantly increased lesion width and a reduced number of corticospinal tract fibers caudal to the lesion center after local application of recombinant IL-1ß. Consistently, the treatment significantly worsened the neurological outcome after SCI in mice compared with PBS controls. In contrast, the absence of IL-1ß in IL-1ßKO mice significantly improved recovery from SCI compared with wildtype mice. Histological analysis revealed a smaller lesion size, reduced lesion width and greatly decreased astrogliosis in the white matter, while the number of corticospinal tract fibers increased significantly 5 mm caudal to the lesion in IL-1ßKO mice relative to controls. Our study for the first time characterizes the detrimental effects of IL-1ß not only on lesion development (in terms of size and glia activation), but also on the plasticity of central nervous system axons after injury.


Asunto(s)
Axones/fisiología , Interleucina-1beta/deficiencia , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Animales , Axones/efectos de los fármacos , Axones/patología , Femenino , Gliosis/inducido químicamente , Gliosis/metabolismo , Gliosis/patología , Interleucina-1beta/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regeneración Nerviosa/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Proteínas Recombinantes/toxicidad , Traumatismos de la Médula Espinal/inducido químicamente , Resultado del Tratamiento
7.
J Immunol ; 189(3): 1448-58, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22745379

RESUMEN

Innate immune receptors represent an evolutionarily ancient system that allows organisms to detect and rapidly respond to pathogen- and host-derived factors. TLRs are predominantly expressed in immune cells and mediate such a response. Although this class of pattern recognition receptors is involved in CNS disorders, the knowledge of ligands leading to activation of TLRs and to subsequent CNS damage is limited. We report in this study that ssRNA causes neurodegeneration and neuroinflammation dependent on TLR7 in the CNS. TLR7 is not only expressed in microglia, the major immune cells of the brain, but also in neurons of the CNS. Extracellularly delivered ssRNA40, an oligoribonucleotide derived from HIV and an established ligand of TLR7, induces neuronal cell death dependent on TLR7 and the central adapter molecule MyD88 in vitro. Activation of caspase-3 is involved in neuronal damage mediated by TLR7. This cell-autonomous neuronal cell death induced by ssRNA40 is amplified in the presence of microglia that mount an inflammatory response to ssRNA40 through TLR7. Intrathecal administration of ssRNA40 causes widespread neurodegeneration in wild-type but not in TLR7(-/-) mice, confirming that neuronal cell death induced by ssRNA40 through TLR7 occurs in vivo. Our results point to a possible mechanism through which extracellularly delivered ssRNA contributes to CNS damage and determine an obligatory role for TLR7 in this pathway.


Asunto(s)
Líquido Extracelular/inmunología , Líquido Extracelular/virología , Glicoproteínas de Membrana/fisiología , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/virología , ARN Viral/administración & dosificación , Receptor Toll-Like 7/fisiología , Animales , Caspasa 3/efectos adversos , Caspasa 3/fisiología , Muerte Celular/genética , Muerte Celular/inmunología , Línea Celular Tumoral , Células HEK293 , VIH/genética , VIH/inmunología , Humanos , Inyecciones Espinales , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/efectos adversos , Factor 88 de Diferenciación Mieloide/fisiología , Enfermedades Neurodegenerativas/patología , Cultivo Primario de Células , ARN Viral/efectos adversos , ARN Viral/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 7/deficiencia , Receptor Toll-Like 7/genética
8.
Nat Neurosci ; 15(6): 827-35, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22610069

RESUMEN

Activation of innate immune receptors by host-derived factors exacerbates CNS damage, but the identity of these factors remains elusive. We uncovered an unconventional role for the microRNA let-7, a highly abundant regulator of gene expression in the CNS, in which extracellular let-7 activates the RNA-sensing Toll-like receptor (TLR) 7 and induces neurodegeneration through neuronal TLR7. Cerebrospinal fluid (CSF) from individuals with Alzheimer's disease contains increased amounts of let-7b, and extracellular introduction of let-7b into the CSF of wild-type mice by intrathecal injection resulted in neurodegeneration. Mice lacking TLR7 were resistant to this neurodegenerative effect, but this susceptibility to let-7 was restored in neurons transfected with TLR7 by intrauterine electroporation of Tlr7(−/−) fetuses. Our results suggest that microRNAs can function as signaling molecules and identify TLR7 as an essential element in a pathway that contributes to the spread of CNS damage.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Glicoproteínas de Membrana/metabolismo , MicroARNs/metabolismo , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Receptor Toll-Like 7/metabolismo , Enfermedad de Alzheimer/genética , Animales , Apoptosis/fisiología , Encéfalo/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Células HEK293 , Humanos , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología
9.
J Neuroinflammation ; 8: 183, 2011 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-22200088

RESUMEN

Pro-inflammatory cytokines such as interleukin-1 beta (IL-1ß) are considered to exert detrimental effects during brain trauma and in neurodegenerative disorders. Consistently, it has been demonstrated that IL-1ß suppresses neurotrophin-mediated neuronal cell survival rendering neurons vulnerable to degeneration. Since neurotrophins are also well known to strongly influence axonal plasticity, we investigated here whether IL-1ß has a similar negative impact on neurite growth. We analyzed neurite density and length of organotypic brain and spinal cord slice cultures under the influence of the neurotrophins NGF, BDNF, NT-3 and NT-4. In brain slices, only NT-3 significantly promoted neurite density and length. Surprisingly, a similar increase of neurite growth was induced by IL-1ß. Additionally, both factors increased the number of brain slices displaying maximal neurite growth. Furthermore, the co-administration of IL-1ß and NT-3 significantly increased the number of brain slices displaying maximal neurite growth compared to single treatments. These data indicate that these two factors synergistically stimulate two distinct aspects of neurite outgrowth, namely neurite density and neurite length from acute organotypic brain slices.


Asunto(s)
Encéfalo/efectos de los fármacos , Interleucina-1beta/metabolismo , Neuritas/efectos de los fármacos , Neurotrofina 3/metabolismo , Médula Espinal/efectos de los fármacos , Animales , Encéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/farmacología , Plasticidad Neuronal/fisiología , Neurotrofina 3/farmacología , Técnicas de Cultivo de Órganos , Médula Espinal/metabolismo
10.
Chem Biol ; 14(6): 635-44, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17584611

RESUMEN

Bis-indolylquinones represent a class of fungal natural products that display antiretroviral, antidiabetes, or cytotoxic bioactivities. Recent advances in Aspergillus genomic mining efforts have led to the discovery of the tdiA-E-gene cluster, which is the first genetic locus dedicated to bis-indolylquinone biosynthesis. We have now genetically and biochemically characterized the enzymes TdiA (bis-indolylquinone synthetase) and TdiD (L-tryptophan:phenylpyruvate aminotransferase), which, together, confer biosynthetic abilities for didemethylasterriquinone D to Aspergillus nidulans. This compound is the universal intermediate for all bis-indolylquinones. In this biochemical study of a bis-indolylquinone synthetase and a fungal natural product transaminase, we present a one-pot chemoenzymatic protocol to generate didemethylasterriquinone D in vitro. As TdiA resembles a nonribosomal peptide synthetase, yet catalyzes carbon-carbon-bond formation, we discuss the implications for peptide synthetase chemistry.


Asunto(s)
Antivirales , Aspergillus nidulans , Hipoglucemiantes , Indolquinonas/biosíntesis , Péptido Sintasas , Triptófano-Transaminasa , Antivirales/química , Aspergillus nidulans/enzimología , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Catálisis , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Hipoglucemiantes/química , Indolquinonas/química , Estructura Molecular , Familia de Multigenes , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Triptófano-Transaminasa/genética , Triptófano-Transaminasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA