RESUMEN
Although a key role of cross-dressing has been established in immunity to viral infection and more recently in the instigation of transplant rejection, its role in tolerance is unclear. We investigated the role of intragraft dendritic cells (DCs) and cross-dressing in mouse major histocompatibility complex (MHC)-mismatched liver transplant tolerance that occurs without therapeutic immunosuppression. Although donor interstitial DCs diminished rapidly after transplantation, they were replaced in the liver by host DCs that peaked on postoperative day (POD) 7 and persisted indefinitely. Approximately 60% of these recipient DCs displayed donor MHC class I, indicating cross-dressing. By contrast, only a very minor fraction (0%-2%) of cross-dressed DCs (CD-DCs) was evident in the spleen. CD-DCs sorted from liver grafts expressed much higher levels of T cell inhibitory programed death ligand 1 (PD-L1) and high levels of interleukin-10 compared with non-CD-DCs (nCD-DCs) isolated from the graft. Concomitantly, high incidences of programed death protein 1 (PD-1)hi T cell immunoglobulin and mucin domain containing 3 (TIM-3)+ exhausted graft-infiltrating CD8+ T cells were observed. Unlike nCD-DCs, the CD-DCs failed to stimulate proliferation of allogeneic T cells but markedly suppressed antidonor host T cell proliferation. CD-DCs were much less evident in allografts from DNAX-activating protein of 12 kDa (DAP12)-/- donors that were rejected acutely. CONCLUSION: These findings suggest that graft-infiltrating PD-L1hi CD-DCs may play a key role in the regulation of alloimmunity and in the induction of liver transplant tolerance. (Hepatology 2018;67:1499-1515).
Asunto(s)
Células Dendríticas/inmunología , Supervivencia de Injerto/inmunología , Hígado/inmunología , Tolerancia al Trasplante/inmunología , Animales , Citometría de Flujo , Microscopía Intravital , Trasplante de Hígado/efectos adversos , Complejo Mayor de Histocompatibilidad/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Trasplante HomólogoRESUMEN
BACKGROUND: Little is known about how new-generation adenosine triphosphate-competitive mechanistic target of rapamycin (mTOR) kinase inhibitors affect immunity and allograft rejection. METHODS: mTOR complex (C) 1 and 2 signaling in dendritic cells and T cells was analyzed by Western blotting, whereas immune cell populations in normal and heart allograft recipient mice were analyzed by flow cytometry. Alloreactive T cell proliferation was quantified in mixed leukocyte reaction; intracellular cytokine production and serum antidonor IgG levels were determined by flow analysis and immunofluorescence staining used to detect IgG in allografts. RESULTS: The novel target of rapamycin kinase inhibitor AZD2014 impaired dendritic cell differentiation and T cell proliferation in vitro and depressed immune cells and allospecific T cell responses in vivo. A 9-day course of AZD2014 (10 mg/kg, intraperitoneally, twice daily) or rapamycin (RAPA) (1 mg/kg, intraperitoneally, daily) prolonged median heart allograft survival time significantly (25 days for AZD2014, 100 days for RAPA, 9.5 days for control). Like RAPA, AZD2014 suppressed graft mononuclear cell infiltration, increased regulatory T cell to effector memory T cell ratios and reduced T follicular helper and B cells 7 days posttransplant. By 21 days (10 days after drug withdrawal), however, T follicular helper and B cells and donor-specific IgG1 and IgG2c antibody titers were significantly lower in RAPA-treated compared with AZD2014-treated mice. Elevated regulatory T cell to effector memory T cell ratios were maintained after RAPA, but not AZD2014 withdrawal. CONCLUSIONS: Immunomodulatory effects of AZD2014, unlike those of RAPA, were not sustained after drug withdrawal, possibly reflecting distinct pharmacokinetics or/and inhibitory effects of AZD2014 on mTORC2.