Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Scand J Med Sci Sports ; 34(6): e14672, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887854

RESUMEN

Footwear has the potential to reduce soft-tissue vibrations (STV) but responses are highly subject-specific. Recent evidence shows that compressive garments minimizing STV have a beneficial effect on neuromuscular (NM) fatigue. The aim was to determine whether an individualized midsole hardness can minimize STV and NM fatigue during a half marathon. Twenty experienced runners were recruited for three visits: a familiarization session including the identification of midsole minimizing and maximizing STV amplitude (MIN and MAX, respectively), and two half marathon sessions at 95% of speed at the second ventilatory threshold. STV of the gastrocnemius medialis (GM) muscle, running kinetics, foot strike pattern, rating perceived exhaustion (RPE), and midsole liking were recorded every 3 km. NM fatigue was assessed on plantar flexors (PF) before (PRE) and after (POST) the half marathon. At POST, PF central and peripheral alterations and changes in contact time, step frequency, STV median frequency, and impact force frequency as well as foot strike pattern were found in both MIN and MAX. No significant differences in damping, STV main frequency, flight time, duty factor, and loading rate were observed between conditions whatever the time period. During the half marathon, STV amplitude of GM significantly increased over time for the MAX condition (+13.3%) only. Differences between MIN and MAX were identified for RPE and midsole liking. It could be hypothesized that, while significant, the effect of midsole hardness on STV is too low to substantially affect NM fatigue.


Asunto(s)
Carrera de Maratón , Fatiga Muscular , Músculo Esquelético , Zapatos , Vibración , Humanos , Masculino , Adulto , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Femenino , Carrera de Maratón/fisiología , Pie/fisiología , Dureza , Fenómenos Biomecánicos , Carrera/fisiología , Persona de Mediana Edad
2.
Sensors (Basel) ; 23(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37837018

RESUMEN

Establishing a sprint acceleration force-velocity profile is a way to assess an athlete's sprint-specific strength and speed production capacities. It can be determined in field condition using GNSS-based (global navigation satellite system) devices. The aims of this study were to (1) assess the inter-unit and the inter-trial reliability of the force-velocity profile variables obtained with K-AI Wearable Tech devices (50 Hz), (2) assess the concurrent validity of the input variables (maximal sprint speed and acceleration time constant), and (3) assess the validity of the output variables (maximal force output, running velocity and power). Twelve subjects, including one girl, performed forty-one 30 m sprints in total, during which the running speed was measured using two GPS (global positioning system) devices placed on the upper back and a radar (Stalker® Pro II Sports Radar Gun). Concurrent validity, inter-device and inter-trial reliability analyses were carried out for the input and output variables. Very strong to poor correlation (0.99 to 0.38) was observed for the different variables between the GPS and radar devices, with typical errors ranging from small to large (all < 7.6%). Inter-unit reliability was excellent to moderate depending on the variable (ICC values between 0.65 and 0.99). Finally, for the inter-trial reliability, the coefficients of variation were low to very low (all < 5.6%) for the radar and the GPS. The K-AI Wearable Tech used in this study is a concurrently valid and reliable alternative to radar for assessing a sprint acceleration force-velocity profile.


Asunto(s)
Rendimiento Atlético , Deportes , Humanos , Reproducibilidad de los Resultados , Fenómenos Mecánicos , Aceleración , Sistemas de Información Geográfica
3.
J Strength Cond Res ; 37(7): 1470-1478, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37347946

RESUMEN

ABSTRACT: Besson, T, Pastor, FS, Varesco, G, Berthet, M, Kennouche, D, Dandrieux, P-E, Rossi, J, and Millet, GY. Elite vs. experienced male and female trail runners: comparing running economy, biomechanics, strength, and power. J Strength Cond Res 37(7): 1470-1478, 2023-The increased participation in trail running (TR) races and the emergence of official international races have increased the performance level of the world best trail runners. The aim of this study was to compare cost of running (Cr) and biomechanical and neuromuscular characteristics of elite trail runners with their lower level counterparts. Twenty elite (10 females; ELITE) and 21 experienced (10 females; EXP) trail runners participated in the study. Cr and running biomechanics were measured at 10 and 14 km·h-1 on flat and at 10 km·h-1 with 10% uphill incline. Subjects also performed maximal isometric voluntary contractions of knee and hip extensors and knee flexors and maximal sprints on a cycle ergometer to assess the power-torque-velocity profile (PTVP). Athletes also reported their training volume during the previous year. Despite no differences in biomechanics, ELITE had a lower Cr than EXP (p < 0.05). Despite nonsignificant difference in maximal lower-limb power between groups, ELITE displayed a greater relative torque (p < 0.01) and lower maximal velocity (p < 0.01) in the PTVP. Females displayed shorter contact times (p < 0.01) compared with males, but no sex differences were observed in Cr (p > 0.05). No sex differences existed for the PTVP slope, whereas females exhibited lower relative torque (p < 0.01) and velocity capacities (p < 0.01) compared with males. Although not comprehensively assessing all determining factors of TR performance, those data evidenced level and sex specificities of trail runners in some factors of performance. Strength training can be suggested to lower level trail runners to improve Cr and thus TR performance.


Asunto(s)
Extremidad Inferior , Carrera , Humanos , Masculino , Femenino , Fenómenos Biomecánicos , Rodilla , Articulación de la Rodilla
4.
J Sports Med Phys Fitness ; 63(7): 797-804, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36924471

RESUMEN

BACKGROUND: This study aimed to determine the effects of a running sprint interval training protocol (R-SIT) on the sprint acceleration mechanical properties and jump performance. Eleven young male basketball players performed 6 R-SIT sessions for 2 weeks. METHODS: Each session consisted of 30-second running bouts repeated 4 to 7 times interspersed by 4 minutes of recovery. Performance was assessed from the individual power-force-velocity profiles (PVFP) over a 20-m sprint and from a countermovement jump at baseline (PRE) and after two weeks of training (POST). RESULTS: Sprint time decreased by 2% over the first 5 and 10 meters (P<0.01) while no significant changes in the time at 20 meters (-0.8%, P=0.09) nor in maximal velocity (-1%, P=0.31) were detected. The average PFVP showed an increase in theoretical maximal force and power output of 5 and 4%, respectively (P<0.05), with no change in theoretical maximal speed (P=0.26). Jump height and power also increased after training (5 and 3% respectively, P<0.01). Players improved their maximal sprint distance covered during the 30-second bouts and became more fatigue-resistant to long sprint events. CONCLUSIONS: Six sessions of R-SIT helped to enhance short sprint times, acceleration and power output.


Asunto(s)
Rendimiento Atlético , Baloncesto , Entrenamiento de Intervalos de Alta Intensidad , Carrera , Humanos , Masculino , Entrenamiento de Intervalos de Alta Intensidad/métodos , Fatiga
5.
Int J Sports Physiol Perform ; 18(2): 209-212, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634310

RESUMEN

PURPOSE: Carbon plates have been used to increase running shoes' longitudinal bending stiffness (LBS), leading to reductions in the energy cost of level running (Cr). However, whether or not this is true during uphill (UH) running remains unknown. The aim of our study was to identify the effect of LBS on Cr during UH running. METHODS: Twenty well-trained male runners participated in this study. Cr was determined using gas exchange during nine 4-minute bouts performed using 3 different LBS shoe conditions at 2.22 and 4.44 m/s on level and 2.22 m/s UH (gradient: + 15%) running. All variables were compared using 2-way analyses of variance (LBS × speed/grade effects). RESULTS: There was no significant effect of LBS (F = 2.04; P = .14, ηp2=.11) and no significant LBS × grade interaction (F = 0.31; P = .87, ηp2=.02). Results were characterized by a very large interindividual variability in response to LBS changes. CONCLUSIONS: The current study contributes to a growing body of literature reporting no effect of LBS on Cr during level and UH running. Yet, the very large interindividual differences in response to changes in LBS suggest that increasing shoe LBS may be beneficial for some runners.


Asunto(s)
Carrera , Zapatos , Humanos , Masculino , Fenómenos Biomecánicos , Carrera/fisiología
6.
Eur J Sport Sci ; 23(7): 1155-1163, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35730761

RESUMEN

The purpose of the study was to assess the influence of a preceding mountain ultramarathon on the impact between the foot and the ground and the resulting soft tissue vibrations (STV). Two sessions of measurements were performed on 52 trail runners, before and just after mountain trail running races of various distances (from 40 to 171 km). Triaxial accelerometers were used to quantify the foot-ground impact (FGI) and STV of both gastrocnemius medialis (GAS) and vastus lateralis (VL) muscles during level treadmill running at 10 km·h-1. A continuous wavelet transform was used to analyze the acceleration signals in the time-frequency domain, and the maps of coefficients as well as the frequency and damping properties of STV were computed. Fatigue was assessed from isometric maximal voluntary contraction force loss of knee extensors (KE) and plantar flexors (PF) after each race. Statistical nonParametric Mapping and linear mixed models were used to compare the means between the data obtained before and after the races. FGI amplitude and GAS STV were not modified after the race, while VL STV amplitude, frequency and damping significantly decreased whatever the running distance. A significant force loss was observed for the PF (26 ± 14%) and KE (27 ± 16%), but this was not correlated to the changes observed in STV. These results might reveal a protection mechanism of the muscles, indicating that biomechanical and/or physiological adaptations may occur in mountain ultramarathons to limit STV and muscle damage of knee extensors.Trial registration: ClinicalTrials.gov identifier: NCT04025138..


Trail running races with distances from 40 to 171 km induced the same alterations of soft-tissue vibrations. Due to the hilly characteristics of trail running, only the vastus lateralis soft-tissue vibrations were affected by the races.Vastus lateralis vibration amplitude, frequency and damping coefficient were reduced after trail running races. These modifications can arise from a protection mechanism and/or modification in the muscle properties.Neuromuscular fatigue quantified with loss of maximal isometric force production is not predictive of soft-tissue vibration modifications.


Asunto(s)
Fatiga Muscular , Vibración , Humanos , Electromiografía , Pie/fisiología , Extremidad Inferior , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología
7.
J Strength Cond Res ; 37(1): 181-186, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515604

RESUMEN

ABSTRACT: Sabater Pastor, FS, Besson, T, Berthet, M, Varesco, G, Kennouche, D, Dandrieux, P-E, Rossi, J, and Millet, GY. Elite road vs. trail runners: comparing economy, biomechanics, strength, and power. J Strength Cond Res 37(1): 181-186, 2023-The purpose of this study was to determine the differences between road (ROAD) vs. trail (TRAIL) elite runners in terms of force-velocity profile (FVP), running biomechanics, lower-limb maximal isometric strength, cost of running (Cr), and training. Seventeen male elite athletes (10 TRAIL and 7 ROAD) participated in this study. Force-velocity profile was measured using a 2-sprint test on a cycle ergometer. Strength was assessed with a dynamometer measuring isometric maximum voluntary torque of the knee extensors and knee flexors. Biomechanics parameters (running kinematics and stiffness) were measured, and Cr was calculated at 10 and 14 km·h-1 at 0% slope and at 10 km·h-1 on a 10% slope on a treadmill. Athletes also reported their training duration during the previous year. Theoretical maximal torque (F0) and maximal power (Pmax) in the FVP were higher for TRAIL vs. ROAD (122 ± 13 vs. 99 ± 7 N·m, p = 0.001; and 726 ± 89 vs. 626 ± 44 W; p = 0.016). Cost of running was higher for TRAIL compared with ROAD on flat at 14 km·h-1 (4.32 ± 0.22 vs. 4.06 ± 0.29 J·kg-1·m-1; p = 0.047) but similar at 10 km·h-1 and uphill. No differences were found in maximal isometric strength or running biomechanics. ROAD spent 81% more time training than TRAIL (p = 0.0003). The specific training (i.e., "natural" resistance training) performed during graded running in trail runners and training on level surface at high speed may explain our results. Alternatively, it is possible that trail running selects stronger athletes because of the greater strength requirements of graded running.


Asunto(s)
Carrera , Masculino , Humanos , Fenómenos Biomecánicos , Rodilla , Atletas , Prueba de Esfuerzo
8.
Sports Med Open ; 8(1): 131, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273049

RESUMEN

During running, the human body is subjected to impacts generating repetitive soft tissue vibrations (STV). They have been frequently discussed to be harmful for the musculoskeletal system and may alter running gait. The aims of this narrative review were to: (1) provide a comprehensive overview of the literature on STV during running, especially why and how STV occurs; (2) present the various approaches and output parameters used for quantifying STV with their strengths and limitations; (3) summarise the factors that affect STV. A wide set of parameters are employed in the literature to characterise STV. Amplitude of STV used to quantify the mechanical stress should be completed by time-frequency approaches to better characterise neuromuscular adaptations. Regarding sports gear, compression apparels seem to be effective in reducing STV. In contrast, the effects of footwear are heterogeneous and responses to footwear interventions are highly individual. The creation of functional groups has recently been suggested as a promising way to better adapt the characteristics of the shoes to the runners' anthropometrics. Finally, fatigue was found to increase vibration amplitude but should be investigated for prolonged running exercises and completed by an evaluation of neuromuscular fatigue. Future research needs to examine the individual responses, particularly in fatigued conditions, in order to better characterise neuromuscular adaptations to STV.

9.
J Neurophysiol ; 128(4): 778-789, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36001792

RESUMEN

Whether the neural control of manual behaviors differs between the dominant and nondominant hand is poorly understood. This study aimed to determine whether the level of common synaptic input to motor neurons innervating the same or different muscles differs between the dominant and the nondominant hand. Seventeen participants performed two motor tasks with distinct mechanical requirements: an isometric pinch and an isometric rotation of a pinched dial. Each task was performed at 30% of maximum effort and was repeated with the dominant and nondominant hand. Motor units were identified from two intrinsic (flexor digitorum interosseous and thenar) and one extrinsic muscle (flexor digitorum superficialis) from high-density surface electromyography recordings. Two complementary approaches were used to estimate common synaptic inputs. First, we calculated the coherence between groups of motor neurons from the same and from different muscles. Then, we estimated the common input for all pairs of motor neurons by correlating the low-frequency oscillations of their discharge rate. Both analyses led to the same conclusion, indicating less common synaptic input between motor neurons innervating different muscles in the dominant hand than in the nondominant hand, which was only observed during the isometric rotation task. No between-side differences in common input were observed between motor neurons of the same muscle. This lower level of common input could confer higher flexibility in the recruitment of motor units, and therefore, in mechanical outputs. Whether this difference between the dominant and nondominant arm is the cause or the consequence of handedness remains to be determined.NEW & NOTEWORTHY How the neural control of manual behaviors differs between the dominant and nondominant hand remains poorly understood. This study shows that there is less common synaptic input between motor neurons innervating different muscles in the dominant than in the nondominant hand during isometric rotation tasks. This lower level of common input could confer higher flexibility in the recruitment of motor units.


Asunto(s)
Lateralidad Funcional , Neuronas Motoras , Electromiografía , Mano/inervación , Humanos , Neuronas Motoras/fisiología , Músculo Esquelético/fisiología
10.
Appl Ergon ; 102: 103737, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35397280

RESUMEN

To teach a skilled motor task, it is crucial to understand the characteristics of expertise. The aim of the present study was to compare the kinematics of the hand sewing task between novices (n = 10), intermediates (n = 10) and experts (n = 10). Compared to novices and intermediates, the proximal joint of expert participants was less involved in the task than their distal joints. The shoulder of experts stayed closer to the trunk, while the ranges of motion of the wrist and fingers were higher. This ability enabled them to avoid lifting the arm, which was resting on the table. We observed a low cycle-to-cycle variability of the movement pattern for experts, while it was more variable in novices. Moreover, experts shared similar joints synergies attesting of an "experts" common gesture. This knowledge gained about the hand sewing kinematics can be used to refine the training process of dressmakers.


Asunto(s)
Gestos , Movimiento , Fenómenos Biomecánicos , Mano , Humanos , Extremidad Superior
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA