Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Eur J Biochem ; 267(4): 1075-82, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10672016

RESUMEN

In the yeast Saccharomyces cerevisiae, two acyl-CoA:sterol acyltransferases (ASATs) that catalyze the synthesis of steryl esters have been identified, namely Are2p (Sat1p) and Are1p (Sat2p). Deletion of either ARE1 or ARE2 has no effect on cell viability, and are1are2 double mutants grow in a similar manner to wild-type despite the complete lack of cellular ASAT activity and steryl ester formation [Yang, H., Bard, M., Bruner, D. A., Gleeson, A., Deckelbaum, R. J., Aljinovic, G., Pohl, T. M., Rothstein, R. & Sturley, S. L. (1996) Science 272, 1353-1356; Yu, C., Kennedy, J., Chang, C. C. Y. & Rothblatt, J. A. (1996) J. Biol. Chem. 271, 24157-24163]. Here we show that both Are2p and Are1p reside in the endoplasmic reticulum as demonstrated by measuring ASAT activity in subcellular fractions of are1 and are2 deletion strains. This localization was confirmed by fluorescence microscopy using hybrid proteins of Are2p and Are1p fused to green fluorescent protein (GFP). Lipid analysis of are1 and are2 deletion strains revealed that Are2p and Are1p utilize sterol substrates in vivo with different efficiency; Are2p has a significant preference for ergosterol as a substrate, whereas Are1p esterifies sterol precursors, mainly lanosterol, as well as ergosterol. The specificity towards fatty acids is similar for both isoenzymes. The lack of steryl esters in are1are2 mutant cells is largely compensated by an increased level of free sterols. Nevertheless, terbinafine, an inhibitor of ergosterol biosynthesis, inhibits growth of are1are2 cells more efficiently than growth of wild-type. In a growth competition experiment are1are2 cells grow more slowly than wild-type after several rounds of cultivation, suggesting that Are1p and Are2p or steryl esters, the product formed by these two enzymes, are more important in the natural environment than under laboratory conditions.


Asunto(s)
Aciltransferasas/metabolismo , Ergosterol/biosíntesis , Lanosterol/biosíntesis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Aciltransferasas/genética , División Celular/efectos de los fármacos , Retículo Endoplásmico/enzimología , Ergosterol/análisis , Ergosterol/antagonistas & inhibidores , Ésteres/química , Ésteres/metabolismo , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Isoenzimas/genética , Isoenzimas/metabolismo , Lanosterol/análisis , Microscopía Fluorescente , Naftalenos/farmacología , Fenotipo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Esterol O-Aciltransferasa , Fracciones Subcelulares/enzimología , Especificidad por Sustrato , Terbinafina
3.
Nature ; 399(6732): 162-6, 1999 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-10335847

RESUMEN

The dauer larva is an alternative larval stage in Caenorhabditis elegans which allows animals to survive through periods of low food availability. Well-fed worms live for about three weeks, but dauer larvae can live for at least two months without affecting post-dauer lifespan. Mutations in daf-2 and age-1, which produce a dauer constitutive (Daf-C) phenotype, and in clk-1, which are believed to slow metabolism, markedly increase adult lifespan. Here we show that a ctl-1 mutation reduces adult lifespan in otherwise wild-type animals and eliminates the daf-c and clk-1-mediated extension of adult lifespan. ctl-1 encodes an unusual cytosolic catalase; a second gene, ctl-2, encodes a peroxisomal catalase. ctl-1 messenger RNA is increased in dauer larvae and adults with the daf-c mutations. We suggest that the ctl-1 catalase is needed during periods of starvation, as in the dauer larva, and that its misexpression in daf-c and clk-1 adults extends lifespan. Cytosolic catalase may have evolved to protect nematodes from oxidative damage produced during prolonged dormancy before reproductive maturity, or it may represent a general mechanism for permitting organisms to cope with the metabolic changes that accompany starvation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/fisiología , Catalasa/fisiología , Proteínas del Helminto/fisiología , Longevidad/fisiología , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Catalasa/genética , Citosol/enzimología , Expresión Génica , Genes de Helminto , Proteínas del Helminto/genética , Longevidad/genética , Datos de Secuencia Molecular , Mutación , Estrés Oxidativo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
4.
J Biol Chem ; 271(39): 24157-63, 1996 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-8798656

RESUMEN

Esterification of cholesterol by acyl-CoA:cholesterol acyltransferase (ACAT) is a key element in maintaining cholesterol homeostasis in cells of higher animals. In the budding yeast, Saccharomyces cerevisiae, accumulation of ergosteryl esters accompanies entry into stationary phase and sporulation. We have determined that two genes in yeast, SAT1 and SAT2, encode isozymes of acyl-CoA:sterol acyltransferase (ASAT) which are functionally related to ACAT. The SAT1 isozyme is the major catalytic isoform, accounting for at least 65-75% of total ASAT activity. Targeted deletions of one or both genes do not compromise mitotic cell growth or spore germination. However, diploids that are homozygous for a SAT1 null mutation exhibit significantly reduced sporulation efficiency. Furthermore, a larger fraction of the sporulating diploids arrest after the first meiotic division. Human ACAT expressed in sat1 sat2 mutant cells can catalyze esterification of cholesterol and, to a lesser extent, ergosterol in vitro, but restores ergosteryl oleate formation in vivo to only approximately 8% of that catalyzed by yeast ASAT in wild-type cells.


Asunto(s)
Aciltransferasas/genética , Aciltransferasas/metabolismo , Isoenzimas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Colesterol/metabolismo , Clonación Molecular , Proteínas Fúngicas/genética , Genes Fúngicos , Prueba de Complementación Genética , Humanos , Datos de Secuencia Molecular , Mutagénesis Insercional , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Esporas Fúngicas , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa/metabolismo
5.
Mol Cell Biol ; 12(7): 3288-96, 1992 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-1620130

RESUMEN

SEC63 encodes a protein required for secretory protein translocation into the endoplasmic reticulum (ER) of Saccharomyces cerevisiae (J. A. Rothblatt, R. J. Deshaies, S. L. Sanders, G. Daum, and R. Schekman, J. Cell Biol. 109:2641-2652, 1989). Antibody directed against a recombinant form of the protein detects a 73-kDa polypeptide which, by immunofluorescence microscopy, is localized to the nuclear envelope-ER network. Cell fractionation and protease protection experiments confirm the prediction that Sec63p is an integral membrane protein. A series of SEC63-SUC2 fusion genes was created to assess the topology of Sec63p within the ER membrane. The largest hybrid proteins are unglycosylated, suggesting that the carboxyl terminus of Sec63p faces the cytosol. Invertase fusion to a loop in Sec63p that is flanked by two putative transmembrane domains produces an extensively glycosylated hybrid protein. This loop, which is homologous to the amino terminus of the Escherichia coli heat shock protein, DnaJ, is likely to face the ER lumen. By analogy to the interaction of the DnaJ and Hsp70-like DnaK proteins in E. coli, the DnaJ loop of Sec63p may recruit luminal Hsp70 (BiP/GRP78/Kar2p) to the translocation apparatus. Mutations in two highly conserved positions of the DnaJ loop and short deletions of the carboxyl terminus inactivate Sec63p activity. Sec63p associates with several other proteins, including Sec61p, a 31.5-kDa glycoprotein, and a 23-kDa protein, and together with these proteins may constitute part of the polypeptide translocation apparatus. A nonfunctional DnaJ domain mutant allele does not interfere with the formation of the Sec63p/Sec61p/gp31.5/p23 complex.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia de Bases , Transporte Biológico Activo , Análisis Mutacional de ADN , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Proteínas de Escherichia coli , Técnica del Anticuerpo Fluorescente , Proteínas del Choque Térmico HSP40 , Proteínas de Choque Térmico/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/genética , Homología de Secuencia de Ácido Nucleico , Fracciones Subcelulares/química
6.
Mol Biol Cell ; 3(2): 129-42, 1992 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-1550957

RESUMEN

Yeast mutants defective in the translocation of soluble secretory proteins into the lumen of the endoplasmic reticulum (sec61, sec62, sec63) are not impaired in the assembly and glycosylation of the type II membrane protein dipeptidylaminopeptidase B (DPAPB) or of a chimeric membrane protein consisting of the multiple membrane-spanning domain of yeast hydroxymethylglutaryl CoA reductase (HMG1) fused to yeast histidinol dehydrogenase (HIS4C). This chimera is assembled in wild-type or mutant cells such that the His4c protein is oriented to the ER lumen and thus is not available for conversion of cytosolic histidinol to histidine. Cells harboring the chimera have been used to select new translocation defective sec mutants. Temperature-sensitive lethal mutations defining two complementation groups have been isolated: a new allele of sec61 and a single isolate of a new gene sec65. The new isolates are defective in the assembly of DPAPB, as well as the secretory protein alpha-factor precursor. Thus, the chimeric membrane protein allows the selection of more restrictive sec mutations rather than defining genes that are required only for membrane protein assembly. The SEC61 gene was cloned, sequenced, and used to raise polyclonal antiserum that detected the Sec61 protein. The gene encodes a 53-kDa protein with five to eight potential membrane-spanning domains, and Sec61p antiserum detects an integral protein localized to the endoplasmic reticulum membrane. Sec61p appears to play a crucial role in the insertion of secretory and membrane polypeptides into the endoplasmic reticulum.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Mutación/genética , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico/genética , División Celular/fisiología , Clonación Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
J Cell Biol ; 109(6 Pt 1): 2665-75, 1989 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-2556404

RESUMEN

When nuclear localization sequences (termed NLS) are placed at the N terminus of cytochrome c1, a mitochondrial inner membrane protein, the resulting hybrid proteins do not assemble into mitochondria when synthesized in the yeast Saccharomyces cerevisiae. Cells lacking mitochondrial cytochrome c1, but expressing the hybrid NLS-cytochrome c1 proteins, are unable to grow on glycerol since the hybrid proteins are associated primarily with the nucleus. A similar hybrid protein with a mutant NLS is transported to and assembled into the mitochondria. To identify proteins that might be involved in recognition of nuclear localization signals, we isolated conditional-lethal mutants (npl, for nuclear protein localization) that missorted NLS-cytochrome c1 to the mitochondria, allowing growth on glycerol. The gene corresponding to one complementation group (NPL1) encodes a protein with homology to DnaJ, an Escherichia coli heat shock protein. npl1-1 is allelic to sec63, a gene that affects transit of nascent secretory proteins across the endoplasmic reticulum. Rothblatt, J. A., R. J. Deshaies, S. L. Sanders, G. Daum, and R. Schekman. 1989. J. Cell Biol. 109:2641-2652. The npl1 mutants reported here also weakly affect translocation of preprocarboxypeptidaseY across the ER membrane. A normally nuclear hybrid protein containing a NLS fused to invertase and a nucleolar protein are not localized to the nucleus in npl1/sec63 cells at the nonpermissive temperature. Thus, NPL1/SEC63 may act at a very early common step in localization of proteins to the nucleus and the ER. Alternatively, by affecting ER and nuclear envelope assembly, npl1 may indirectly alter assembly of proteins into the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/genética , Genes Bacterianos , Genes Fúngicos , Proteínas de Choque Térmico/genética , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Citocromos c1/análisis , Citocromos c1/genética , Técnica del Anticuerpo Fluorescente , Genotipo , Immunoblotting , Datos de Secuencia Molecular , Mutación , Proteínas Recombinantes de Fusión/análisis , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico
9.
J Cell Biol ; 109(6 Pt 1): 2641-52, 1989 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-2687285

RESUMEN

Genes that function in translocation of secretory protein precursors into the ER have been identified by a genetic selection for mutant yeast cells that fail to translocate a signal peptide-cytosolic enzyme hybrid protein. The new mutants, sec62 and sec63, are thermosensitive for growth and accumulate a variety of soluble secretory and vacuolar precursors whose electrophoretic mobilities coincide with those of the corresponding in vitro translated polypeptides. Proteolytic sensitivity of precursor molecules in extracts of mutant cells confirms that polypeptide translocation is blocked. Some form of interaction among the SEC61 (Deshaies, R. J., and R. Schekman. 1987. J. Cell Biol. 105:633-645), SEC62 and SEC63 gene products is suggested by the observation that haploid cells containing any pair of the mutations are inviable at 24 degrees C and show a marked enhancement of the translocation defect. The translocation defects of two mutants (sec62 and sec63) have been reproduced in vitro. sec63 microsomes display low and thermolabile translocation activity for prepro-alpha-factor (pp alpha F) synthesized with a cytosol fraction from wild type yeast. These gene products may constitute part of the polypeptide recognition or translocation apparatus of the ER membrane. Pulse-chase analysis of the translocation-defective mutants demonstrates that insertion of pp alpha F into the ER can proceed posttranslationally.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , Clonación Molecular , Cruzamientos Genéticos , Citosol/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Genotipo , Factor de Apareamiento , Microsomas/metabolismo , Mutación , Péptidos/genética , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo
11.
EMBO J ; 6(11): 3455-63, 1987 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-3322808

RESUMEN

In vitro, efficient translocation and glycosylation of the precursor of yeast alpha-factor can take place post-translationally. This property of prepro-alpha-factor appears to be unique as it could not be extended to other yeast protein precursors such as preinvertase or preprocarboxypeptidase Y. In order to determine if specific domains of prepro-alpha-factor were involved in post-translational translocation, we carried out a series of experiments in which major domains were either deleted or fused onto reporter proteins. Fusion of various domains of prepro-alpha-factor onto the reporter protein alpha-globin did not allow post-translational translocation to occur in the yeast in vitro system. Prepro-alpha-factor retained its ability to be post-translationally translocated when parts or all of the pro region were deleted. Removal of the C-terminal repeats containing mature alpha-factor had the most profound influence as post-translational translocation decreased in proportion to the number of repeats deleted. Taken together, these results suggest that efficient post-translational translocation requires a signal sequence and the four C-terminal repeats. There does not however, appear to be specific information contained within the C-terminus, as their presence in fusion did not enable the post-translational translocation of reporter proteins. Lastly, the ability to post-translationally translocate radiochemically pure prepro-alpha-factor that had been isolated by immuno-affinity chromatography required the addition of a yeast lysate fraction. Moreover, post-translational translocation is a function of the microsomal membrane of yeast microsomes and not of a factor peculiar to the yeast lysate, as reticulocyte lysate supported this as well.


Asunto(s)
Péptidos/genética , Precursores de Proteínas/genética , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Glicosilación , Factor de Apareamiento , Feromonas/genética , Transcripción Genética
12.
EMBO J ; 5(5): 1031-6, 1986 May.
Artículo en Inglés | MEDLINE | ID: mdl-15957217

RESUMEN

In an in vitro system comprising a yeast cell-free translation system, yeast microsomes and mRNA encoding prepro-alpha-factor, the translocation of this protein across the membrane of the microsomal vesicle and its glycosylation could b uncoupled from its translation. Such post-translational processing is dependent upon the presence of ATP in the system. It is not, however, affected by a variety of uncouplers, ionophores or inhibitors, including carbonyl cyanide m-chlorophenyl hydrazone (CCCP), valinomycin, nigericin, dinitrophenol (DNP), potassium cyanide (KCN) or N-ethyl maleimide (NEM). This mechanism of translocation is significant as it indicates that a protein of 18 000 daltons is capable of crossing an endoplasmic reticulum-derived membrane post-translationally. For the moment, this phenomenon seems to be restricted to prepro-alpha-factor in the yeast in vitro system. Neither invertase nor IgG chi light chain could be translocated post-translationally in yeast, nor was such processing observed for prepro-alpha-factor in a wheat germ system supplemented with canine pancreatic microsomes.


Asunto(s)
Péptidos/metabolismo , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilación , Factor de Apareamiento
13.
Cell ; 44(4): 619-28, 1986 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-3512097

RESUMEN

A homologous cell-free system has been derived from the yeast Saccharomyces cerevisiae that allows the translation, translocation, and glycosylation of the precursors of yeast mating factor alpha and invertase. The precursors were translated in a yeast lysate from mRNA obtained by in vitro transcription of the MF alpha 1 and SUC2 genes. Inclusion of yeast microsomes resulted in the glycosylation of the alpha-factor precursor, which was demonstrated to be sequestered within the membrane vesicles. Similar results, including signal sequence cleavage, were observed for invertase. Processing of secretory proteins translated in a yeast lysate could not be achieved using microsomes derived from canine pancreas, nor were yeast microsomes active in a wheat germ translation system.


Asunto(s)
Glicoproteínas/metabolismo , Glicósido Hidrolasas/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Sistema Libre de Células , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicoproteínas/genética , Glicósido Hidrolasas/genética , Hexosaminidasas/metabolismo , Factor de Apareamiento , Microsomas/metabolismo , Péptidos/genética , Biosíntesis de Proteínas , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , beta-Fructofuranosidasa
14.
Harv Dent Alumni Bull ; 26(3): 92-3, 1966.
Artículo en Inglés | MEDLINE | ID: mdl-5223755

Asunto(s)
Odontología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...