Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nat Commun ; 15(1): 5644, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969648

RESUMEN

Long-read sequencing, exemplified by PacBio, revolutionizes genomics, overcoming challenges like repetitive sequences. However, the high DNA requirement ( > 1 µg) is prohibitive for small organisms. We develop a low-input (100 ng), low-cost, and amplification-free library-generation method for PacBio sequencing (LILAP) using Tn5-based tagmentation and DNA circularization within one tube. We test LILAP with two Drosophila melanogaster individuals, and generate near-complete genomes, surpassing preexisting single-fly genomes. By analyzing variations in these two genomes, we characterize mutational processes: complex transpositions (transposon insertions together with extra duplications and/or deletions) prefer regions characterized by non-B DNA structures, and gene conversion of transposons occurs on both DNA and RNA levels. Concurrently, we generate two complete assemblies for the endosymbiotic bacterium Wolbachia in these flies and similarly detect transposon conversion. Thus, LILAP promises a broad PacBio sequencing adoption for not only mutational studies of flies and their symbionts but also explorations of other small organisms or precious samples.


Asunto(s)
Elementos Transponibles de ADN , Drosophila melanogaster , Genoma de los Insectos , Mutación , Wolbachia , Animales , Drosophila melanogaster/genética , Elementos Transponibles de ADN/genética , Wolbachia/genética , Genoma de los Insectos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Genómica/métodos , Conversión Génica
2.
Nat Commun ; 15(1): 5573, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956036

RESUMEN

Recent advancements in genome assembly have greatly improved the prospects for comprehensive annotation of Transposable Elements (TEs). However, existing methods for TE annotation using genome assemblies suffer from limited accuracy and robustness, requiring extensive manual editing. In addition, the currently available gold-standard TE databases are not comprehensive, even for extensively studied species, highlighting the critical need for an automated TE detection method to supplement existing repositories. In this study, we introduce HiTE, a fast and accurate dynamic boundary adjustment approach designed to detect full-length TEs. The experimental results demonstrate that HiTE outperforms RepeatModeler2, the state-of-the-art tool, across various species. Furthermore, HiTE has identified numerous novel transposons with well-defined structures containing protein-coding domains, some of which are directly inserted within crucial genes, leading to direct alterations in gene expression. A Nextflow version of HiTE is also available, with enhanced parallelism, reproducibility, and portability.


Asunto(s)
Elementos Transponibles de ADN , Anotación de Secuencia Molecular , Elementos Transponibles de ADN/genética , Anotación de Secuencia Molecular/métodos , Animales , Programas Informáticos , Humanos , Reproducibilidad de los Resultados , Biología Computacional/métodos , Bases de Datos Genéticas , Algoritmos , Genoma/genética
3.
Adv Sci (Weinh) ; : e2402951, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874370

RESUMEN

Composite DNA letters, by merging all four DNA nucleotides in specified ratios, offer a pathway to substantially increase the logical density of DNA digital storage (DDS) systems. However, these letters are susceptible to nucleotide errors and sampling bias, leading to a high letter error rate, which complicates precise data retrieval and augments reading expenses. To address this, Derrick-cp is introduced as an innovative soft-decision decoding algorithm tailored for DDS utilizing composite letters. Derrick-cp capitalizes on the distinctive error sensitivities among letters to accurately predict and rectify letter errors, thus enhancing the error-correcting performance of Reed-Solomon codes beyond traditional hard-decision decoding limits. Through comparative analyses in the existing dataset and simulated experiments, Derrick-cp's superiority is validated, notably halving the sequencing depth requirement and slashing costs by up to 22% against conventional hard-decision strategies. This advancement signals Derrick-cp's significant role in elevating both the precision and cost-efficiency of composite letter-based DDS.

4.
Genome Biol ; 25(1): 107, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671502

RESUMEN

Long-read sequencing data, particularly those derived from the Oxford Nanopore sequencing platform, tend to exhibit high error rates. Here, we present NextDenovo, an efficient error correction and assembly tool for noisy long reads, which achieves a high level of accuracy in genome assembly. We apply NextDenovo to assemble 35 diverse human genomes from around the world using Nanopore long-read data. These genomes allow us to identify the landscape of segmental duplication and gene copy number variation in modern human populations. The use of NextDenovo should pave the way for population-scale long-read assembly using Nanopore long-read data.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma Humano , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos , Secuenciación de Nanoporos/métodos , Análisis de Secuencia de ADN/métodos , Genómica/métodos
5.
Gigascience ; 132024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626722

RESUMEN

BACKGROUND: Most currently available reference genomes lack the sequence map of sex-limited (such as Y and W) chromosomes, which results in incomplete assemblies that hinder further research on sex chromosomes. Recent advancements in long-read sequencing and population sequencing have provided the opportunity to assemble sex-limited chromosomes without the traditional complicated experimental efforts. FINDINGS: We introduce the first computational method, Sorting long Reads of Y or other sex-limited chromosome (SRY), which achieves improved assembly results compared to flow sorting. Specifically, SRY outperforms in the heterochromatic region and demonstrates comparable performance in other regions. Furthermore, SRY enhances the capabilities of the hybrid assembly software, resulting in improved continuity and accuracy. CONCLUSIONS: Our method enables true complete genome assembly and facilitates downstream research of sex-limited chromosomes.


Asunto(s)
Genoma , Cromosomas Sexuales , Cromosomas Sexuales/genética , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
6.
Nat Commun ; 15(1): 3126, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605047

RESUMEN

Long reads that cover more variants per read raise opportunities for accurate haplotype construction, whereas the genotype errors of single nucleotide polymorphisms pose great computational challenges for haplotyping tools. Here we introduce KSNP, an efficient haplotype construction tool based on the de Bruijn graph (DBG). KSNP leverages the ability of DBG in handling high-throughput erroneous reads to tackle the challenges. Compared to other notable tools in this field, KSNP achieves at least 5-fold speedup while producing comparable haplotype results. The time required for assembling human haplotypes is reduced to nearly the data-in time.


Asunto(s)
Algoritmos , Polimorfismo de Nucleótido Simple , Humanos , Haplotipos/genética , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos
7.
BMC Genomics ; 25(1): 197, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373887

RESUMEN

BACKGROUND: In cold and temperate zones, seasonal reproduction plays a crucial role in the survival and reproductive success of species. The photoperiod influences reproductive processes in seasonal breeders through the hypothalamic-pituitary-gonadal (HPG) axis, in which the mediobasal hypothalamus (MBH) serves as the central region responsible for transmitting light information to the endocrine system. However, the cis-regulatory elements and the transcriptional activation mechanisms related to seasonal activation of the reproductive axis in MBH remain largely unclear. In this study, an artificial photoperiod program was used to induce the HPG axis activation in male quails, and we compared changes in chromatin accessibility changes during the seasonal activation of the HPG axis. RESULTS: Alterations in chromatin accessibility occurred in the mediobasal hypothalamus (MBH) and stabilized at LD7 during the activation of the HPG axis. Most open chromatin regions (OCRs) are enriched mainly in introns and distal intergenic regions. The differentially accessible regions (DARs) showed enrichment of binding motifs of the RFX, NKX, and MEF family of transcription factors that gained-loss accessibility under long-day conditions, while the binding motifs of the nuclear receptor (NR) superfamily and BZIP family gained-open accessibility. Retinoic acid signaling and GTPase-mediated signal transduction are involved in adaptation to long days and maintenance of the HPG axis activation. According to our footprint analysis, three clock-output genes (TEF, DBP, and HLF) and the THRA were the first responders to long days in LD3. THRB, NR3C2, AR, and NR3C1 are the key players associated with the initiation and maintenance of the activation of the HPG axis, which appeared at LD7 and tended to be stable under long-day conditions. By integrating chromatin and the transcriptome, three genes (DIO2, SLC16A2, and PDE6H) involved in thyroid hormone signaling showed differential chromatin accessibility and expression levels during the seasonal activation of the HPG axis. TRPA1, a target of THRB identified by DAP-seq, was sensitive to photoactivation and exhibited differential expression levels between short- and long-day conditions. CONCLUSION: Our data suggest that trans effects were the main factors affecting gene expression during the seasonal activation of the HPG axis. This study could lead to further research on the seasonal reproductive behavior of birds, particularly the role of MBH in controlling seasonal reproductive behavior.


Asunto(s)
Cromatina , Codorniz , Animales , Masculino , Estaciones del Año , Codorniz/genética , Cromatina/genética , Cromatina/metabolismo , Hipotálamo/metabolismo , Reproducción/genética , Fotoperiodo
8.
Bioinformatics ; 40(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38377404

RESUMEN

MOTIVATION: Seeding is a rate-limiting stage in sequence alignment for next-generation sequencing reads. The existing optimization algorithms typically utilize hardware and machine-learning techniques to accelerate seeding. However, an efficient solution provided by professional next-generation sequencing compressors has been largely overlooked by far. In addition to achieving remarkable compression ratios by reordering reads, these compressors provide valuable insights for downstream alignment that reveal the repetitive computations accounting for more than 50% of seeding procedure in commonly used short read aligner BWA-MEM at typical sequencing coverage. Nevertheless, the exploited redundancy information is not fully realized or utilized. RESULTS: In this study, we present a compressive seeding algorithm, named CompSeed, to fill the gap. CompSeed, in collaboration with the existing reordering-based compression tools, finishes the BWA-MEM seeding process in about half the time by caching all intermediate seeding results in compact trie structures to directly answer repetitive inquiries that frequently cause random memory accesses. Furthermore, CompSeed demonstrates better performance as sequencing coverage increases, as it focuses solely on the small informative portion of sequencing reads after compression. The innovative strategy highlights the promising potential of integrating sequence compression and alignment to tackle the ever-growing volume of sequencing data. AVAILABILITY AND IMPLEMENTATION: CompSeed is available at https://github.com/i-xiaohu/CompSeed.


Asunto(s)
Compresión de Datos , Programas Informáticos , Análisis de Secuencia de ADN/métodos , Algoritmos , Compresión de Datos/métodos , Computadores , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
9.
Natl Sci Rev ; 11(2): nwad229, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38213525

RESUMEN

Error-correcting codes (ECCs) employed in the state-of-the-art DNA digital storage (DDS) systems suffer from a trade-off between error-correcting capability and the proportion of redundancy. To address this issue, in this study, we introduce soft-decision decoding approach into DDS by proposing a DNA-specific error prediction model and a series of novel strategies. We demonstrate the effectiveness of our approach through a proof-of-concept DDS system based on Reed-Solomon (RS) code, named as Derrick. Derrick shows significant improvement in error-correcting capability without involving additional redundancy in both in vitro and in silico experiments, using various sequencing technologies such as Illumina, PacBio and Oxford Nanopore Technology (ONT). Notably, in vitro experiments using ONT sequencing at a depth of 7× reveal that Derrick, compared with the traditional hard-decision decoding strategy, doubles the error-correcting capability of RS code, decreases the proportion of matrices with decoding-failure by 229-fold, and amplifies the potential maximum storage volume by impressive 32 388-fold. Also, Derrick surpasses 'state-of-the-art' DDS systems by comprehensively considering the information density and the minimum sequencing depth required for complete information recovery. Crucially, the soft-decision decoding strategy and key steps of Derrick are generalizable to other ECCs' decoding algorithms.

10.
Genome Biol ; 24(1): 277, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049885

RESUMEN

BACKGROUND: Recent state-of-the-art sequencing technologies enable the investigation of challenging regions in the human genome and expand the scope of variant benchmarking datasets. Herein, we sequence a Chinese Quartet, comprising two monozygotic twin daughters and their biological parents, using four short and long sequencing platforms (Illumina, BGI, PacBio, and Oxford Nanopore Technology). RESULTS: The long reads from the monozygotic twin daughters are phased into paternal and maternal haplotypes using the parent-child genetic map and for each haplotype. We also use long reads to generate haplotype-resolved whole-genome assemblies with completeness and continuity exceeding that of GRCh38. Using this Quartet, we comprehensively catalogue the human variant landscape, generating a dataset of 3,962,453 SNVs, 886,648 indels (< 50 bp), 9726 large deletions (≥ 50 bp), 15,600 large insertions (≥ 50 bp), 40 inversions, 31 complex structural variants, and 68 de novo mutations which are shared between the monozygotic twin daughters. Variants underrepresented in previous benchmarks owing to their complexity-including those located at long repeat regions, complex structural variants, and de novo mutations-are systematically examined in this study. CONCLUSIONS: In summary, this study provides high-quality haplotype-resolved assemblies and a comprehensive set of benchmarking resources for two Chinese monozygotic twin samples which, relative to existing benchmarks, offers expanded genomic coverage and insight into complex variant categories.


Asunto(s)
Benchmarking , Pueblos del Este de Asia , Gemelos Monocigóticos , Humanos , Pueblos del Este de Asia/genética , Genómica , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Gemelos Monocigóticos/genética , Estudios en Gemelos como Asunto
11.
Proc Natl Acad Sci U S A ; 120(42): e2305208120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37816049

RESUMEN

Polyploidization is important to the evolution of plants. Subgenome dominance is a distinct phenomenon associated with most allopolyploids. A gene on the dominant subgenome tends to express to higher RNA levels in all organs as compared to the expression of its syntenic paralogue (homoeolog). The mechanism that underlies the formation of subgenome dominance remains unknown, but there is evidence for the involvement of transposon/DNA methylation density differences nearby the genes of parents as being causal. The subgenome with lower density of transposon and methylation near genes is positively associated with subgenome dominance. Here, we generated eight generations of allotetraploid progenies from the merging of parental genomes Brassica rapa and Brassica oleracea. We found that transposon/methylation density differ near genes between the parental (rapa:oleracea) existed in the wide hybrid, persisted in the neotetraploids (the synthetic Brassica napus), but these neotetraploids expressed no expected subgenome dominance. This absence of B. rapa vs. B. oleracea subgenome dominance is particularly significant because, while there is no negative relationship between transposon/methylation level and subgenome dominance in the neotetraploids, the more ancient parental subgenomes for all Brassica did show differences in transposon/methylation densities near genes and did express, in the same samples of cells, biased gene expression diagnostic of subgenome dominance. We conclude that subgenome differences in methylated transposon near genes are not sufficient to initiate the biased gene expressions defining subgenome dominance. Our result was unexpected, and we suggest a "nuclear chimera" model to explain our data.


Asunto(s)
Brassica napus , Brassica rapa , Brassica , Brassica/genética , Genoma de Planta/genética , Brassica rapa/genética , Brassica napus/genética , Metilación de ADN/genética , Poliploidía
12.
Nucleic Acids Res ; 51(20): 10924-10933, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37843097

RESUMEN

Detailed knowledge of the genetic variations in diverse crop populations forms the basis for genetic crop improvement and gene functional studies. In the present study, we analyzed a large rice population with a total of 10 548 accessions to construct a rice super-population variation map (RSPVM), consisting of 54 378 986 single nucleotide polymorphisms, 11 119 947 insertion/deletion mutations and 184 736 presence/absence variations. Assessment of variation detection efficiency for different population sizes revealed a sharp increase of all types of variation as the population size increased and a gradual saturation of that after the population size reached 10 000. Variant frequency analysis indicated that ∼90% of the obtained variants were rare, and would therefore likely be difficult to detect in a relatively small population. Among the rare variants, only 2.7% were predicted to be deleterious. Population structure, genetic diversity and gene functional polymorphism of this large population were evaluated based on different subsets of RSPVM, demonstrating the great potential of RSPVM for use in downstream applications. Our study provides both a rich genetic basis for understanding natural rice variations and a powerful tool for exploiting great potential of rare variants in future rice research, including population genetics and functional genomics.


Asunto(s)
Variación Genética , Oryza , Genética de Población , Genómica , Oryza/genética , Polimorfismo de Nucleótido Simple
13.
J Integr Plant Biol ; 65(10): 2320-2335, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37688324

RESUMEN

Diterpenoid alkaloids (DAs) have been often utilized in clinical practice due to their analgesic and anti-inflammatory properties. Natural DAs are prevalent in the family Ranunculaceae, notably in the Aconitum genus. Nevertheless, the evolutionary origin of the biosynthesis pathway responsible for DA production remains unknown. In this study, we successfully assembled a high-quality, pseudochromosome-level genome of the DA-rich species Aconitum vilmorinianum (A. vilmorinianum) (5.76 Gb). An A. vilmorinianum-specific whole-genome duplication event was discovered using comparative genomic analysis, which may aid in the evolution of the DA biosynthesis pathway. We identified several genes involved in DA biosynthesis via integrated genomic, transcriptomic, and metabolomic analyses. These genes included enzymes encoding target ent-kaurene oxidases and aminotransferases, which facilitated the activation of diterpenes and insertion of nitrogen atoms into diterpene skeletons, thereby mediating the transformation of diterpenes into DAs. The divergence periods of these genes in A. vilmorinianum were further assessed, and it was shown that two major types of genes were involved in the establishment of the DA biosynthesis pathway. Our integrated analysis offers fresh insights into the evolutionary origin of DAs in A. vilmorinianum as well as suggestions for engineering the biosynthetic pathways to obtain desired DAs.


Asunto(s)
Aconitum , Alcaloides , Diterpenos , Aconitum/genética , Aconitum/metabolismo , Multiómica , Diterpenos/metabolismo , Alcaloides/metabolismo , Transcriptoma/genética , Raíces de Plantas
15.
Cell Res ; 33(10): 745-761, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37452091

RESUMEN

Since the release of the complete human genome, the priority of human genomic study has now been shifting towards closing gaps in ethnic diversity. Here, we present a fully phased and well-annotated diploid human genome from a Han Chinese male individual (CN1), in which the assemblies of both haploids achieve the telomere-to-telomere (T2T) level. Comparison of this diploid genome with the CHM13 haploid T2T genome revealed significant variations in the centromere. Outside the centromere, we discovered 11,413 structural variations, including numerous novel ones. We also detected thousands of CN1 alleles that have accumulated high substitution rates and a few that have been under positive selection in the East Asian population. Further, we found that CN1 outperforms CHM13 as a reference genome in mapping and variant calling for the East Asian population owing to the distinct structural variants of the two references. Comparison of SNP calling for a large cohort of 8869 Chinese genomes using CN1 and CHM13 as reference respectively showed that the reference bias profoundly impacts rare SNP calling, with nearly 2 million rare SNPs miss-called with different reference genomes. Finally, applying the CN1 as a reference, we discovered 5.80 Mb and 4.21 Mb putative introgression sequences from Neanderthal and Denisovan, respectively, including many East Asian specific ones undetected using CHM13 as the reference. Our analyses reveal the advances of using CN1 as a reference for population genomic studies and paleo-genomic studies. This complete genome will serve as an alternative reference for future genomic studies on the East Asian population.


Asunto(s)
Diploidia , Pueblos del Este de Asia , Genoma Humano , Telómero , Humanos , Masculino , Pueblo Asiatico/genética , Pueblos del Este de Asia/etnología , Pueblos del Este de Asia/genética , Genoma Humano/genética , Genómica , Telómero/genética
16.
J Genet Genomics ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37245652

RESUMEN

With the rapid development of sequencing technologies, especially the maturity of third-generation sequencing technologies, there has been a significant increase in the number and quality of published genome assemblies. The emergence of these high-quality genomes has raised higher requirements for genome evaluation. Although numerous computational methods have been developed to evaluate assembly quality from various perspectives, the selective use of these evaluation methods can be arbitrary and inconvenient for fairly comparing the assembly quality. To address this issue, we have developed the Genome Assembly Evaluating Pipeline (GAEP), which provides a comprehensive assessment pipeline for evaluating genome quality from multiple perspectives, including continuity, completeness, and correctness. Additionally, GAEP includes new functions for detecting misassemblies and evaluating the assembly redundancy, which performs well in our testing. GAEP is publicly available at https://github.com/zy-optimistic/GAEP under the GPL3.0 License. With GAEP, users can quickly obtain accurate and reliable evaluation results, facilitating the comparison and selection of high-quality genome assemblies.

17.
Genes (Basel) ; 14(4)2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37107573

RESUMEN

The incubation behavior of geese seriously affects their egg production performance. Studies on incubation behavior have identified functional genes, but the regulatory architecture relationship between functional genes and chromatin accessibility remains poorly understood. Here, we present an integrated analysis of open chromatin profiles and transcriptome to identify the cis-regulatory element and their potential transcription factors involved in regulating incubation behavior in goose pituitary. Assay for transposase-accessible chromatin sequencing (ATAC-seq) revealed that open chromatin regions increased in the pituitary during the transition from incubation behavior to laying. We identified 920 significant differential accessible regions (DARs) in the pituitary. Compared to the laying stage, most DARs had higher chromatin accessibility in the brooding stage. Motif analysis of open DARs showed that the most significant transcription factor (TF) occupied sites predominantly enriched in motifs binding to the RFX family (RFX5, RFX2, and RFX1). While the majority of TF motifs enriched under sites of the nuclear receptor (NR) family (ARE, GRE, and PGR) in closed DARs at the incubation behavior stage. Footprint analysis indicated that the transcription factor RFX family exhibited higher binding on chromatin at the brooding stage. To further elucidate the effect of changes in chromatin accessibility on gene expression levels, a comparison of the transcriptome revealed 279 differentially expressed genes (DEGs). The transcriptome changes were associated with processes of steroid biosynthesis. By integrating ATAC-seq and RNA-seq, few DARs directly affect incubation behavior by regulating the transcription levels of genes. Five DAR-related DEGs were found to be closely related to maintaining the incubation behavior in geese. Footprinting analysis revealed a set of transcription factors (RFX1, RFX2, RFX3, RFX5, BHLHA15, SIX1, and DUX) which displayed the highest activity at the brooding stage. SREBF2 was predicted to be the unique differentially expressed transcription factor whose mRNA level was down-regulated and enriched in hyper-accessible regions of PRL in the broody stage. In the present study, we comprehensively profiled the transcriptome and chromatin accessibility in the pituitary related to incubation behavior. Our findings provided insight into the identification and analysis of regulatory elements in goose incubation behavior. The epigenetic alterations profiled here can help decipher the epigenetic mechanisms that contribute to the regulation of incubation behavior in birds.


Asunto(s)
Cromatina , Transcriptoma , Animales , Cromatina/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Gansos/genética , Gansos/metabolismo , Perfilación de la Expresión Génica
18.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36868220

RESUMEN

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Asunto(s)
Euphausiacea , Genoma , Animales , Relojes Circadianos/genética , Ecosistema , Euphausiacea/genética , Euphausiacea/fisiología , Genómica , Análisis de Secuencia de ADN , Elementos Transponibles de ADN , Evolución Biológica , Adaptación Fisiológica
19.
Genomics Proteomics Bioinformatics ; 21(1): 203-215, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35718271

RESUMEN

Sika deer are known to prefer oak leaves, which are rich in tannins and toxic to most mammals; however, the genetic mechanisms underlying their unique ability to adapt to living in the jungle are still unclear. In identifying the mechanism responsible for the tolerance of a highly toxic diet, we have made a major advancement by explaining the genome of sika deer. We generated the first high-quality, chromosome-level genome assembly of sika deer and measured the correlation between tannin intake and RNA expression in 15 tissues through 180 experiments. Comparative genome analyses showed that the UGT and CYP gene families are functionally involved in the adaptation of sika deer to high-tannin food, especially the expansion of the UGT family 2 subfamily B of UGT genes. The first chromosome-level assembly and genetic characterization of the tolerance to a highly toxic diet suggest that the sika deer genome may serve as an essential resource for understanding evolutionary events and tannin adaptation. Our study provides a paradigm of comparative expressive genomics that can be applied to the study of unique biological features in non-model animals.


Asunto(s)
Ciervos , Animales , Ciervos/genética , Ciervos/metabolismo , Taninos/metabolismo , Genoma , Genómica , Dieta
20.
Mol Biol Evol ; 40(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36585823

RESUMEN

Pangolins are one of nature's most fascinating species being scales covered and myrmecophagous diet, yet relatively little is known about the molecular basis. Here, we combine the multi-omics, evolution, and fundamental proteins feature analysis of both Chinese and Malayan pangolins, highlighting the molecular mechanism of both myrmecophagous diet and scale formation, representing a fascinating evolutionary strategy to occupy the unique ecological niches. In contrast to conserved organization of epidermal differentiation complex, pangolin has undergone large scale variation and gene loss events causing expression pattern and function conversion that contribute to cornified epithelium structures on stomach to adapt myrmecophagous diet. Our assemblies also enable us to discover large copies number of high glycine-tyrosine keratin-associated proteins (HGT-KRTAPs). In addition, highly homogenized tandem array, amino content, and the specific expression pattern further validate the strong connection between the molecular mechanism of scale hardness and HGT-KRTAPs.


Asunto(s)
Genoma , Pangolines , Animales , Dieta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...