Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stat Med ; 40(19): 4213-4229, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34114254

RESUMEN

We introduce a numerically tractable formulation of Bayesian joint models for longitudinal and survival data. The longitudinal process is modeled using generalized linear mixed models, while the survival process is modeled using a parametric general hazard structure. The two processes are linked by sharing fixed and random effects, separating the effects that play a role at the time scale from those that affect the hazard scale. This strategy allows for the inclusion of nonlinear and time-dependent effects while avoiding the need for numerical integration, which facilitates the implementation of the proposed joint model. We explore the use of flexible parametric distributions for modeling the baseline hazard function which can capture the basic shapes of interest in practice. We discuss prior elicitation based on the interpretation of the parameters. We present an extensive simulation study, where we analyze the inferential properties of the proposed models, and illustrate the trade-off between flexibility, sample size, and censoring. We also apply our proposal to two real data applications in order to demonstrate the adaptability of our formulation both in univariate time-to-event data and in a competing risks framework. The methodology is implemented in rstan.


Asunto(s)
Modelos Estadísticos , Teorema de Bayes , Simulación por Computador , Humanos , Modelos Lineales , Estudios Longitudinales
2.
Brain Res ; 1520: 1-14, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23688545

RESUMEN

The antidepressant drug fluoxetine is widely used for the treatment of a broad range of psychiatric disorders. Its mechanism of action is thought to involve cellular adaptations that are induced with a slow time course after initiation of treatment. To gain insight into the signaling pathways underlying such changes, the expression levels of proteins in a microsomal sub-fraction enriched in intracellular membranes from the rat forebrain was analyzed after two weeks of treatment with fluoxetine. Proteins were separated by two-dimensional gel electrophoresis, and the differentially regulated protein spots were identified by mass spectrometry. Protein network analysis suggested that most of the identified proteins could potentially be regulated by the insulin family of proteins. Among them, Fructose-bisphosphate aldolase C (AldoC), a glycolytic/gluconeogenic enzyme primarily expressed in forebrain astrocytes, was up-regulated 7.6-fold. An immunohistochemical analysis of the dorsal hippocampus revealed a robust decrease (43±2%) in the co-localization of AldoC and the astrocyte marker GFAP and a diffuse staining pattern, compatible with AldoC secretion into the extracellular space. Consistently, AldoC, contained in an exosome-like fraction in astrocyte conditioned medium, increased significantly in the cerebrospinal fluid. Our findings strongly favor a non-canonic signaling role for AldoC in cellular adaptations induced by repetitive fluoxetine treatment.


Asunto(s)
Antidepresivos de Segunda Generación/farmacología , Fluoxetina/farmacología , Fructosa-Bifosfato Aldolasa/metabolismo , Prosencéfalo/efectos de los fármacos , Prosencéfalo/enzimología , Animales , Electroforesis en Gel Bidimensional , Inmunohistoquímica , Microsomas/enzimología , Ratas , Regulación hacia Arriba
3.
Front Cell Neurosci ; 7: 66, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23675317

RESUMEN

Antidepressant drugs are usually administered for several weeks for the treatment of major depressive disorder. However, they are also prescribed in several additional psychiatric conditions as well as during long-term maintenance treatments. Antidepressants induce adaptive changes in several forebrain structures which include modifications at glutamatergic synapses. We recently found that repetitive administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine to naïve adult male rats induced an increase of mature, mushroom-type dendritic spines in several forebrain regions. This was associated with an increase of GluA2-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPA-Rs) in telencephalic postsynaptic densities. To unravel the functional significance of such a synaptic re-arrangement, we focused on glutamate neurotransmission in the hippocampus. We evaluated the effect of four weeks of 0.7 mg/kg fluoxetine on long-term potentiation (LTP) and long-term depression (LTD) in the CA1 hippocampal subfield. Recordings in hippocampal slices revealed profound deficits in LTP and LTD at Schaffer collateral-CA1 synapses associated to increased spine density and enhanced presence of mushroom-type spines, as revealed by Golgi staining. However, the same treatment had neither an effect on spine morphology, nor on LTP and LTD at perforant path-CA1 synapses. Cobalt staining and immunohistochemical experiments revealed decreased AMPA-R Ca(2+) permeability in the stratum radiatum (s.r.) together with increased GluA2-containing Ca(2+) impermeable AMPA-Rs. Therefore, 4 weeks of fluoxetine treatment promoted structural and functional adaptations in CA1 neurons in a pathway-specific manner that were selectively associated with impairment of activity-dependent plasticity at Schaffer collateral-CA1 synapses.

4.
Curr Stem Cell Res Ther ; 7(3): 191-6, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22329581

RESUMEN

A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS.


Asunto(s)
Células Madre Adultas/trasplante , Células Madre Pluripotentes Inducidas/trasplante , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Adulto , Biomarcadores/metabolismo , Diferenciación Celular , Células Madre Embrionarias/citología , Epigénesis Genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA