Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 12(10)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36029236

RESUMEN

Auxin-inducible degradation is a powerful tool for the targeted degradation of proteins with spatiotemporal control. One limitation of the auxin-inducible degradation system is that not all proteins are degraded efficiently. Here, we demonstrate that an alternative degron sequence, termed mIAA7, improves the efficiency of degradation in Caenorhabditiselegans, as previously reported in human cells. We tested the depletion of a series of proteins with various subcellular localizations in different tissue types and found that the use of the mIAA7 degron resulted in faster depletion kinetics for 5 out of 6 proteins tested. The exception was the nuclear protein HIS-72, which was depleted with similar efficiency as with the conventional AID* degron sequence. The mIAA7 degron also increased the leaky degradation for 2 of the tested proteins. To overcome this problem, we combined the mIAA7 degron with the C. elegans AID2 system, which resulted in complete protein depletion without detectable leaky degradation. Finally, we show that the degradation of ERM-1, a highly stable protein that is challenging to deplete, could be improved further by using multiple mIAA7 degrons. Taken together, the mIAA7 degron further increases the power and applicability of the auxin-inducible degradation system. To facilitate the generation of mIAA7-tagged proteins using CRISPR/Cas9 genome engineering, we generated a toolkit of plasmids for the generation of dsDNA repair templates by PCR.


Asunto(s)
Caenorhabditis elegans , Ácidos Indolacéticos , Animales , Caenorhabditis elegans/metabolismo , Humanos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteolisis
3.
Nat Struct Mol Biol ; 27(9): 790-801, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32661421

RESUMEN

Small interfering RNAs (siRNAs) promote RNA degradation in a variety of processes and have important clinical applications. siRNAs direct cleavage of target RNAs by guiding Argonaute2 (AGO2) to its target site. Target site accessibility is critical for AGO2-target interactions, but how target site accessibility is controlled in vivo is poorly understood. Here, we use live-cell single-molecule imaging in human cells to determine rate constants of the AGO2 cleavage cycle in vivo. We find that the rate-limiting step in mRNA cleavage frequently involves unmasking of target sites by translating ribosomes. Target site masking is caused by heterogeneous intramolecular RNA-RNA interactions, which can conceal target sites for many minutes in the absence of translation. Our results uncover how dynamic changes in mRNA structure shape AGO2-target recognition, provide estimates of mRNA folding and unfolding rates in vivo, and provide experimental evidence for the role of mRNA structural dynamics in control of mRNA-protein interactions.


Asunto(s)
Proteínas Argonautas/metabolismo , ARN Mensajero/metabolismo , Línea Celular , Células HEK293 , Humanos , Conformación de Ácido Nucleico , División del ARN , Pliegue del ARN , ARN Mensajero/química , Ribosomas/metabolismo
4.
Methods Mol Biol ; 1649: 385-404, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29130212

RESUMEN

mRNA translation is a key step in decoding the genetic information stored in DNA. Regulation of translation efficiency contributes to gene expression control and is therefore important for cell fate and function. Here, we describe a recently developed microscopy-based method that allows for visualization of translation of single mRNAs in live cells. The ability to measure translation dynamics of single mRNAs will enable a better understanding of spatiotemporal control of translation, and will provide unique insights into translational heterogeneity of different mRNA molecules in single cells.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Imagen Individual de Molécula/métodos , Línea Celular , Supervivencia Celular , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , ARN Mensajero/genética , Ribosomas/metabolismo , Anticuerpos de Cadena Única/metabolismo
5.
PLoS One ; 12(2): e0171600, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28158315

RESUMEN

Development, tissue homeostasis and tumor suppression depend critically on the correct regulation of cell division. Central in the cell division process is the decision whether to enter the next cell cycle and commit to going through the S and M phases, or to remain temporarily or permanently arrested. Cell cycle studies in genetic model systems could greatly benefit from visualizing cell cycle commitment in individual cells without the need of fixation. Here, we report the development and characterization of a reporter to monitor cell cycle entry in the nematode C. elegans. This reporter combines the mcm-4 promoter, to reveal Rb/E2F-mediated transcriptional control, and a live-cell sensor for CDK-activity. The CDK sensor was recently developed for use in human cells and consists of a DNA Helicase fragment fused to eGFP. Upon phosphorylation by CDKs, this fusion protein changes in localization from the nucleus to the cytoplasm. The combined regulation of transcription and subcellular localization enabled us to visualize the moment of cell cycle entry in dividing seam cells during C. elegans larval development. This reporter is the first to reflect cell cycle commitment in C. elegans and will help further genetic studies of the mechanisms that underlie cell cycle entry and exit.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Quinasas Ciclina-Dependientes/genética , Fosforilación/genética , Fosforilación/fisiología , Regiones Promotoras Genéticas/genética
6.
Cell Cycle ; 15(2): 196-212, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26825227

RESUMEN

Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control.


Asunto(s)
Ciclo Celular/genética , Quinasas Ciclina-Dependientes/genética , Regulación de la Expresión Génica , Neoplasias/genética , Factores de Transcripción/genética , Animales , Diferenciación Celular , Proliferación Celular , Cromatina/química , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Mutación , Neoplasias/metabolismo , Neoplasias/patología , Especificidad de Órganos , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética
7.
Cell ; 162(2): 300-313, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26144318

RESUMEN

The transition from proliferating precursor cells to post-mitotic differentiated cells is crucial for development, tissue homeostasis, and tumor suppression. To study cell-cycle exit during differentiation in vivo, we developed a conditional knockout and lineage-tracing system for Caenorhabditis elegans. Combined lineage-specific gene inactivation and genetic screening revealed extensive redundancies between previously identified cell-cycle inhibitors and the SWI/SNF chromatin-remodeling complex. Muscle precursor cells missing either SWI/SNF or G1/S inhibitor function could still arrest cell division, while simultaneous inactivation of these regulators caused continued proliferation and a C. elegans tumor phenotype. Further genetic analyses support that SWI/SNF acts in concert with hlh-1 MyoD, antagonizes Polycomb-mediated transcriptional repression, and suppresses cye-1 Cyclin E transcription to arrest cell division of muscle precursors. Thus, SWI/SNF and G1/S inhibitors provide alternative mechanisms to arrest cell-cycle progression during terminal differentiation, which offers insight into the frequent mutation of SWI/SNF genes in human cancers.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/crecimiento & desarrollo , Músculos/citología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Musculares , Músculos/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Factores Reguladores Miogénicos/metabolismo , Proteínas Nucleares , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/metabolismo
8.
Nat Commun ; 6: 5906, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25562820

RESUMEN

Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/C(FZR1) activity as an important determinant in response to CDK4/6-inhibitors.


Asunto(s)
Proteínas Cdh1/metabolismo , Ciclo Celular/fisiología , Complejos Multiproteicos/metabolismo , Proteína de Retinoblastoma/metabolismo , Animales , Secuencia de Bases , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas Cdh1/genética , Línea Celular Tumoral , Ciclina D/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inmunoprecipitación , Espectrometría de Masas , Microscopía Fluorescente , Datos de Secuencia Molecular , Proteínas Represoras/genética , Proteína de Retinoblastoma/genética , Análisis de Secuencia de ADN
9.
PLoS Genet ; 7(11): e1002362, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22102824

RESUMEN

Cell proliferation and differentiation are regulated in a highly coordinated and inverse manner during development and tissue homeostasis. Terminal differentiation usually coincides with cell cycle exit and is thought to engage stable transcriptional repression of cell cycle genes. Here, we examine the robustness of the post-mitotic state, using Caenorhabditis elegans muscle cells as a model. We found that expression of a G1 Cyclin and CDK initiates cell cycle re-entry in muscle cells without interfering with the differentiated state. Cyclin D/CDK4 (CYD-1/CDK-4) expression was sufficient to induce DNA synthesis in muscle cells, in contrast to Cyclin E/CDK2 (CYE-1/CDK-2), which triggered mitotic events. Tissue-specific gene-expression profiling and single molecule FISH experiments revealed that Cyclin D and E kinases activate an extensive and overlapping set of cell cycle genes in muscle, yet failed to induce some key activators of G1/S progression. Surprisingly, CYD-1/CDK-4 also induced an additional set of genes primarily associated with growth and metabolism, which were not activated by CYE-1/CDK-2. Moreover, CYD-1/CDK-4 expression also down-regulated a large number of genes enriched for catabolic functions. These results highlight distinct functions for the two G1 Cyclin/CDK complexes and reveal a previously unknown activity of Cyclin D/CDK-4 in regulating metabolic gene expression. Furthermore, our data demonstrate that many cell cycle genes can still be transcriptionally induced in post-mitotic muscle cells, while maintenance of the post-mitotic state might depend on stable repression of a limited number of critical cell cycle regulators.


Asunto(s)
Caenorhabditis elegans/genética , Ciclo Celular/genética , Ciclina D/genética , Ciclina D/metabolismo , Ciclina E/genética , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/genética , Células Musculares/citología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Diferenciación Celular , Proliferación Celular , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Replicación del ADN/genética , Regulación del Desarrollo de la Expresión Génica , Células Musculares/metabolismo , Especificidad de Órganos/genética
10.
Dev Biol ; 350(2): 358-69, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21146520

RESUMEN

DNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues. These mutants grow slowly and either die during larval development or develop into sterile adults. We found that lin-6 corresponds to mcm-4 and encodes an evolutionarily conserved component of the MCM2-7 pre-RC and replicative helicase complex. The MCM-4 protein is expressed in all dividing cells during embryonic and postembryonic development and associates with chromatin in late anaphase. Induction of cell cycle entry and differentiation continues in developing mcm-4 larvae, even in cells that went through abortive division. In contrast to somatic cells in mcm-4 mutants, the gonad continues DNA replication and cell division until late larval development. Expression of MCM-4 in the epidermis (also known as hypodermis) is sufficient to rescue the growth retardation and lethality of mcm-4 mutants. While the somatic gonad and germline show substantial ability to cope with lack of zygotic mcm-4 function, mcm-4 is specifically required in the epidermis for growth and survival of the whole organism. Thus, C. elegans mcm-4 has conserved functions in DNA replication and replication checkpoint control but also shows unexpected tissue-specific requirements.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Ciclo Celular/fisiología , Ciclo Celular , Replicación del ADN , Epidermis/fisiología , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Diferenciación Celular , División Celular , Supervivencia Celular , Fase G1 , Mitosis , Especificidad de Órganos , Fase S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...