Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39104250

RESUMEN

Neutralizing monoclonal antibodies hold great potential for prevention of human immunodeficiency virus (HIV) acquisition. IgG is the most abundant antibody in human serum, has a long half-life, and potent effector functions, making it a prime candidate for an HIV prevention therapeutic. We combined Positron Emission Tomography imaging and fluorescent microscopy of 64Cu-labeled, photoactivatable-green fluorescent protein HIV (PA-GFP-BaL) and fluorescently labeled HGN194 IgG1 to determine whether intravenously instilled IgG influences viral interaction with mucosal barriers and viral penetration in colorectal tissue 2 h after rectal viral challenge. Our results show that IgG1 did not alter the number of virions found throughout the colon or viral penetration into the epithelium of the rectum or descending colon. A minor increase in virions was observed in the transverse colon of IgG1 treated animals. Overall, the number of viral particles found in the mesenteric lymph nodes was low. However, IgG1 administration resulted in a significant reduction of virions found in mesenteric lymph nodes. Taken together, our results show that HGN194 IgG1 does not prevent virions from penetrating into the colorectal mucosa but may perturb HIV virion access to the lymphatic system.

3.
Sci Transl Med ; 14(654): eabn1413, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35857825

RESUMEN

To combat the HIV epidemic and emerging threats such as SARS-CoV-2, immunization strategies are needed that elicit protection at mucosal portals of pathogen entry. Immunization directly through airway surfaces is effective in driving mucosal immunity, but poor vaccine uptake across the mucus and epithelial lining is a limitation. The major blood protein albumin is constitutively transcytosed bidirectionally across the airway epithelium through interactions with neonatal Fc receptors (FcRn). Exploiting this biology, here, we demonstrate a strategy of "albumin hitchhiking" to promote mucosal immunity using an intranasal vaccine consisting of protein immunogens modified with an amphiphilic albumin-binding polymer-lipid tail, forming amph-proteins. Amph-proteins persisted in the nasal mucosa of mice and nonhuman primates and exhibited increased uptake into the tissue in an FcRn-dependent manner, leading to enhanced germinal center responses in nasal-associated lymphoid tissue. Intranasal immunization with amph-conjugated HIV Env gp120 or SARS-CoV-2 receptor binding domain (RBD) proteins elicited 100- to 1000-fold higher antigen-specific IgG and IgA titers in the serum, upper and lower respiratory mucosa, and distal genitourinary mucosae of mice compared to unmodified protein. Amph-RBD immunization induced high titers of SARS-CoV-2-neutralizing antibodies in serum, nasal washes, and bronchoalveolar lavage. Furthermore, intranasal amph-protein immunization in rhesus macaques elicited 10-fold higher antigen-specific IgG and IgA responses in the serum and nasal mucosa compared to unmodified protein, supporting the translational potential of this approach. These results suggest that using amph-protein vaccines to deliver antigen across mucosal epithelia is a promising strategy to promote mucosal immunity against HIV, SARS-CoV-2, and other infectious diseases.


Asunto(s)
COVID-19 , Infecciones por VIH , Administración Intranasal , Albúminas , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , Infecciones por VIH/prevención & control , Inmunidad Mucosa , Inmunoglobulina A , Inmunoglobulina G , Lípidos , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2 , Vacunación
4.
Antibodies (Basel) ; 11(2)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35645210

RESUMEN

When constructing isogenic recombinant IgM-IgG pairs, we discovered that µ heavy chains strongly prefer partnering with λ light chains for optimal IgM expression in transiently cotransfected Expi293 cells. When µ chains were paired with κ light chains, IgM yields were low but increased by logs-up to 20,000 X-by using λ chains instead. Switching light chains did not alter epitope specificity. For dimeric IgA2, optimal expression involved pairing with λ chains, whereas light-chain preference varied for other immunoglobulin classes. In summary, recombinant IgM production can be drastically increased by using λ chains, an important finding in the use of IgM for mucosal immunoprophylaxis.

5.
Front Immunol ; 13: 788619, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273592

RESUMEN

A virosomal vaccine inducing systemic/mucosal anti-HIV-1 gp41 IgG/IgA had previously protected Chinese-origin rhesus macaques (RMs) against vaginal SHIVSF162P3 challenges. Here, we assessed its efficacy in Indian-origin RMs by intramuscular priming/intranasal boosting (n=12/group). Group K received virosome-P1-peptide alone (harboring the Membrane Proximal External Region), Group L combined virosome-rgp41 plus virosome-P1, and Group M placebo virosomes. Vaccination induced plasma binding but no neutralizing antibodies. Five weeks after boosting, all RMs were challenged intravaginally with low-dose SHIVSF162P3 until persistent systemic infection developed. After SHIV challenge #7, six controls were persistently infected versus only one Group L animal (vaccine efficacy 87%; P=0.0319); Group K was not protected. After a 50% SHIV dose increase starting with challenge #8, protection in Group L was lost. Plasmas/sera were analyzed for IgG phenotypes and effector functions; the former revealed that protection in Group L was significantly associated with increased binding to FcγR2/3(A/B) across several time-points, as were some IgG measurements. Vaginal washes contained low-level anti-gp41 IgGs and IgAs, representing a 1-to-5-fold excess over the SHIV inoculum's gp41 content, possibly explaining loss of protection after the increase in challenge-virus dose. Virosomal gp41-vaccine efficacy was confirmed during the initial seven SHIV challenges in Indian-origin RMs when the SHIV inoculum had at least 100-fold more HIV RNA than acutely infected men's semen. Vaccine protection by virosome-induced IgG and IgA parallels the cooperation between systemically administered IgG1 and mucosally applied dimeric IgA2 monoclonal antibodies that as single-agents provided no/low protection - but when combined, prevented mucosal SHIV transmission in all passively immunized RMs.


Asunto(s)
Vacunas contra el SIDA , Seropositividad para VIH , VIH-1 , Virus de la Inmunodeficiencia de los Simios , Animales , Femenino , Humanos , Inmunoglobulina A , Inmunoglobulina G , Macaca mulatta , Virosomas
6.
Sci Immunol ; 6(66): eabf1152, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34860581

RESUMEN

Saponins are potent and safe vaccine adjuvants, but their mechanisms of action remain incompletely understood. Here, we explored the properties of several saponin formulations, including immune-stimulatory complexes (ISCOMs) formed by the self-assembly of saponin and phospholipids in the absence or presence of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). We found that MPLA self-assembles with saponins to form particles physically resembling ISCOMs, which we termed saponin/MPLA nanoparticles (SMNP). Saponin-containing adjuvants exhibited distinctive mechanisms of action, altering lymph flow in a mast cell­dependent manner and promoting antigen entry into draining lymph nodes. SMNP was particularly effective, exhibiting even greater potency than the compositionally related adjuvant AS01B in mice, and primed robust germinal center B cell, TFH, and HIV tier 2 neutralizing antibodies in nonhuman primates. Together, these findings shed new light on mechanisms by which saponin adjuvants act to promote the immune response and suggest that SMNP may be a promising adjuvant in the setting of HIV, SARS-CoV-2, and other pathogens.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Adyuvantes Inmunológicos/farmacología , Linfa/efectos de los fármacos , Saponinas/farmacología , Receptores Toll-Like/agonistas , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Femenino , Linfa/fisiología , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas , Ratas , Ratas Wistar
7.
PLoS Pathog ; 17(11): e1009855, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34793582

RESUMEN

Vertical transmission of human immunodeficiency virus (HIV) can occur in utero, during delivery, and through breastfeeding. We utilized Positron Emission Tomography (PET) imaging coupled with fluorescent microscopy of 64Cu-labeled photoactivatable-GFP-HIV (PA-GFP-BaL) to determine how HIV virions distribute and localize in neonatal rhesus macaques two and four hours after oral viral challenge. Our results show that by four hours after oral viral exposure, HIV virions localize to and penetrate the rectal mucosa. We also used a dual viral challenge with a non-replicative viral vector and a replication competent SHIV-1157ipd3N4 to examine viral transduction and dissemination at 96 hours. Our data show that while SHIV-1157ipd3N4 infection can be found in the oral cavity and upper gastrointestinal (GI) tract, the small and large intestine contained the largest number of infected cells. Moreover, we found that T cells were the biggest population of infected immune cells. Thus, thanks to these novel technologies, we are able to visualize and delineate of viral distribution and infection throughout the entire neonatal GI tract during acute viral infection.


Asunto(s)
Tracto Gastrointestinal/virología , Infecciones por VIH/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/aislamiento & purificación , Linfocitos T/virología , Carga Viral , Animales , Animales Recién Nacidos , Radioisótopos de Cobre/análisis , VIH-1/aislamiento & purificación , Humanos , Macaca mulatta , Tomografía Computarizada por Tomografía de Emisión de Positrones
8.
Front Immunol ; 12: 705592, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413855

RESUMEN

Understanding the interplay between systemic and mucosal anti-HIV antibodies can provide important insights to develop new prevention strategies. We used passive immunization via systemic and/or mucosal routes to establish cause-and-effect between well-characterized monoclonal antibodies and protection against intrarectal (i.r.) SHIV challenge. In a pilot study, for which we re-used animals previously exposed to SHIV but completely protected from viremia by different classes of anti-HIV neutralizing monoclonal antibodies (mAbs), we made a surprise finding: low-dose intravenous (i.v.) HGN194-IgG1, a human neutralizing mAb against the conserved V3-loop crown, was ineffective when given alone but protected 100% of animals when combined with i.r. applied HGN194-dIgA2 that by itself had only protected 17% of the animals. Here we sought to confirm the unexpected synergy between systemically administered IgG1 and mucosally applied dIgA HGN194 forms using six groups of naïve macaques (n=6/group). Animals received i.v. HGN194-IgG1 alone or combined with i.r.-administered dIgA forms; controls remained untreated. HGN194-IgG1 i.v. doses were given 24 hours before - and all i.r. dIgA doses 30 min before - i.r. exposure to a single high-dose of SHIV-1157ipEL-p. All controls became viremic. Among passively immunized animals, the combination of IgG1+dIgA2 again protected 100% of the animals. In contrast, single-agent i.v. IgG1 protected only one of six animals (17%) - consistent with our pilot data. IgG1 combined with dIgA1 or dIgA1+dIgA2 protected 83% (5/6) of the animals. The dIgA1+dIgA2 combination without the systemically administered dose of IgG1 protected 67% (4/6) of the macaques. We conclude that combining suboptimal antibody defenses at systemic and mucosal levels can yield synergy and completely prevent virus acquisition.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Anti-VIH/farmacología , VIH-1/inmunología , Inmunidad Mucosa/efectos de los fármacos , Inmunización Pasiva , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Macaca mulatta , Proyectos Piloto , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control
9.
AIDS ; 35(15): 2423-2432, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34402452

RESUMEN

OBJECTIVE: Antibody-dependent enhancement (ADE) affects host-virus dynamics in fundamentally different ways: i) enhancement of initial virus acquisition, and/or ii) increased disease progression/severity. Here we address the question whether anti-HIV-1 antibodies can enhance initial infection. While cell-culture experiments hinted at this possibility, in-vivo proof remained elusive. DESIGN: We used passive immunization in nonhuman primates challenged with simian-human immunodeficiency virus (SHIV), a chimera expressing HIV-1 envelope. We purified IgG from rhesus monkeys with early-stage SHIV infection - before cross-neutralizing anti-HIV-1 antibodies had developed - and screened for maximal complement-mediated antibody-dependent enhancement (C'-ADE) of viral replication with a SHIV strain phylogenetically distinct from that harbored by IgG donor macaques. IgG fractions with maximal C'-ADE but lacking neutralization were combined to yield enhancing anti-SHIV IgG (enSHIVIG). RESULTS: We serially enrolled naive macaques (Group 1) to determine the minimal and 50% animal infectious doses required to establish persistent infection after intrarectal SHIV challenge. The first animal was inoculated with a 1 : 10 virus-stock dilution; after this animal's viral RNA load was >104copies/ml, the next macaque was challenged with 10x less virus, a process repeated until viremia no longer ensued. Group 2 was pretreated intravenously with enSHIVIG 24 h before SHIV challenge. Overall, Group 2 macaques required 3.4-fold less virus compared to controls (P = 0.002). This finding is consistent with enhanced susceptibility of the passively immunized animals to mucosal SHIV challenge. CONCLUSION: These passive immunization data give proof of IgG-mediated enhanced virus acquisition after mucosal exposure - a potential concern for antibody-based AIDS vaccine development.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Antivirales , Anticuerpos Anti-VIH , Inmunoglobulina G
10.
PLoS Pathog ; 17(6): e1009632, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061907

RESUMEN

Human immunodeficiency virus (HIV) vaccines have not been successful in clinical trials. Dimeric IgA (dIgA) in the form of secretory IgA is the most abundant antibody class in mucosal tissues, making dIgA a prime candidate for potential HIV vaccines. We coupled Positron Emission Tomography (PET) imaging and fluorescent microscopy of 64Cu-labeled, photoactivatable-GFP HIV (PA-GFP-BaL) and fluorescently labeled dIgA to determine how dIgA antibodies influence virus interaction with mucosal barriers and viral penetration in colorectal tissue. Our results show that HIV virions rapidly disseminate throughout the colon two hours after exposure. The presence of dIgA resulted in an increase in virions and penetration depth in the transverse colon. Moreover, virions were found in the mesenteric lymph nodes two hours after viral exposure, and the presence of dIgA led to an increase in virions in mesenteric lymph nodes. Taken together, these technologies enable in vivo and in situ visualization of antibody-virus interactions and detailed investigations of early events in HIV infection.


Asunto(s)
Colon/virología , Anticuerpos Anti-VIH , Infecciones por VIH , Inmunoglobulina A Secretora , Membrana Mucosa/virología , Animales , Macaca mulatta , Membrana Mucosa/inmunología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Recto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA