Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39161293

RESUMEN

The extracellular matrix (ECM) has evolved around complex covalent and non-covalent interactions to create impressive function-from cellular signaling to constant remodeling. A major challenge in the biomedical field is the de novo design and control of synthetic ECMs for applications ranging from tissue engineering to neuromodulation to bioelectronics. As we move towards recreating the ECM's complexity in hydrogels, the field has taken several approaches to recapitulate the main important features of the native ECM (i.e. mechanical, bioactive and dynamic properties). In this review, we first describe the wide variety of hydrogel systems that are currently used, ranging from fully natural to completely synthetic to hybrid versions, highlighting the advantages and limitations of each class. Then, we shift towards supramolecular hydrogels that show great potential for their use as ECM mimics due to their biomimetic hierarchical structure, inherent (controllable) dynamic properties and their modular design, allowing for precise control over their mechanical and biochemical properties. In order to make the next step in the complexity of synthetic ECM-mimetic hydrogels, we must leverage the supramolecular self-assembly seen in the native ECM; we therefore propose to use supramolecular monomers to create larger, hierarchical, co-assembled hydrogels with complex and synergistic mechanical, bioactive and dynamic features.

2.
J Mater Chem B ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171867

RESUMEN

Low molecular weight gels are formed via the self-assembly of small molecules into fibrous structures. In the case of hydrogels, these networks entrap large volumes of water, yielding soft materials. Such gels tend to have weak mechanical properties and a high permeability for cells, making them particularly appealing for regenerative medicine applications. Ureido-pyrimidinone (UPy) supramolecular gelators are self-assembling systems that have demonstrated excellent capabilities as biomaterials. Here, we combine UPy-gelators with another low molecular weight gelator, the functionalized dipeptide 2NapFF. We have successfully characterized these multicomponent systems on a molecular and bulk scale. The addition of 2NapFF to a crosslinked UPy hydrogel significantly increased hydrogel stiffness from 30 Pa to 1300 Pa. Small-angle X-ray scattering was used to probe the underlying structures of the systems and showed that the mixed UPy and 2NapFF systems resemble the scattering data produced by the pristine UPy systems. However, when a bifunctional UPy-crosslinker was added, the scattering was close to that of the 2NapFF only samples. The results suggest that the crosslinker significantly influences the assembly of the low molecular weight gelators. Finally, we analysed the biocompatibility of the systems using fibroblast cells and found that the cells tended to spread more effectively when the crosslinking species was incorporated. Our results emphasise the need for thorough characterisation at multiple length scales to finely control material properties, which is particularly important for developing novel biomaterials.

3.
Macromolecules ; 57(14): 6606-6615, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39071041

RESUMEN

The cellular microenvironment is composed of a dynamic hierarchical fibrillar architecture providing a variety of physical and bioactive signals to the surrounding cells. This dynamicity, although common in biology, is a challenge to control in synthetic matrices. Here, responsive synthetic supramolecular monomers were designed that are able to assemble into hierarchical fibrous structures, combining supramolecular fiber formation via hydrogen bonding interactions, with a temperature-responsive hydrophobic collapse, resulting in cross-linking and hydrogel formation. Therefore, amphiphilic molecules were synthesized, composed of a hydrogen bonding ureido-pyrimidinone (UPy) unit, a hydrophobic alkyl spacer, and a hydrophilic oligo(ethylene glycol) tail. The temperature responsive behavior was introduced by functionalizing these supramolecular amphiphiles with a relatively short poly(N-isopropylacrylamide) (PNIPAM) chain (M n ∼ 2.5 or 5.5 kg/mol). To precisely control the assembly of these monomers, the length of the alkyl spacer between the UPy moiety and PNIPAM was varied in length. A robust sol-gel transition, with the dodecyl UPy-PNIPAM molecule, was obtained, with a network elasticity enhancing over 2000 times upon heating above room temperature. The UPy-PNIPAM compounds with shorter alkyl spacers were already hydrogels at room temperature. The sol-gel transition of the dodecyl UPy-PNIPAM hydrogelator could be tuned by the incorporation of different UPy-functionalized monomers. Furthermore, we demonstrated the suitability of this system for microfluidic cell encapsulation through a convenient temperature sol-gel transition. Our results indicate that this novel thermoresponsive supramolecular system offers a modular platform to study and guide single-cell behavior.

4.
Adv Healthc Mater ; 12(32): e2301392, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37747759

RESUMEN

Recent advances in the field of ophthalmology show great potential in the design of bioengineered constructs to mimic the corneal stroma. Hydrogels based on synthetic supramolecular polymers, are attractive synthetic mimics of the natural highly hydrated corneal stroma. Here, a fully synthetic corneal stromal construct is developed via engineering of an injectable supramolecular hydrogel based on ureido-pyrimidinone (UPy) moieties. The hydrogel displays a dynamic and tunable behavior, which allows for control of biochemical and mechanical cues. Two hydrogels are developed, a fully synthetic hydrogel functionalized with a bioactive cyclic arginine-glycine-aspartate UPy (UPy-cRGD) additive, and a hybrid hydrogel based on UPy-moieties mixed with collagen type I fibers. Both hydrogels supported cell encapsulation and associated cellular deposition of extracellular matrix (ECM) proteins after 21 days. Excitingly, the hydrogels support the activation of isolated primary keratocytes into stromal fibroblasts as well as the differentiation toward more quiescent corneal stromal keratocytes, demonstrated by their characteristic long dendritic protrusions and a substantially diminished cytokine secretion. Furthermore, cells survive shear stresses during an injectability test. Together, these findings highlight the development of an injectable supramolecular hydrogel as a synthetic corneal stromal microenvironment able to host primary keratocytes.


Asunto(s)
Sustancia Propia , Hidrogeles , Hidrogeles/química , Proteínas de la Matriz Extracelular , Polímeros , Colágeno Tipo I
5.
Adv Healthc Mater ; 10(10): e2001987, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33586317

RESUMEN

Recent advances in the field of cardiac regeneration show great potential in the use of injectable hydrogels to reduce immediate flush-out of injected factors, thereby increasing the effectiveness of the encapsulated drugs. To establish a relation between cardiac function and retention of the drug-encapsulating hydrogel, a quantitative in vivo imaging method is required. Here, the supramolecular ureido-pyrimidinone modified poly(ethylene glycol) (UPy-PEG) material is developed into a bioactive hydrogel for radioactive imaging in a large animal model. A radioactive label is synthesized, being a ureido-pyrimidinone moiety functionalized with a chelator (UPy-DOTA) complexed with the radioactive isotope indium-111 (UPy-DOTA-111 In) that is mixed with the hydrogel. Additionally, bioactive and adhesive properties of the UPy-PEG hydrogel are increased by supramolecular introduction of a UPy-functionalized recombinant collagen type 1-based material (UPy-PEG-RCPhC1). This method enables in vivo tracking of the nonbioactive and bioactive supramolecular hydrogels and quantification of hydrogel retention in a porcine heart. In a small pilot, cardiac retention values of 8% for UPy-PEG and 16% for UPy-PEG-RCPhC1 hydrogel are observed 4 h postinjection. This work highlights the importance of retention quantification of hydrogels in vivo, where elucidation of hydrogel quantity at the target site is proposed to strongly influence efficacy of the intended therapy.


Asunto(s)
Corazón , Hidrogeles , Animales , Materiales Biocompatibles , Colágeno Tipo I , Sistemas de Liberación de Medicamentos , Corazón/diagnóstico por imagen , Polietilenglicoles , Porcinos
6.
ACS Omega ; 5(20): 11547-11552, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32478244

RESUMEN

Despite having great value across a wide variety of scientific fields, two-photon polymerizations currently suffer from two significant problems: the need for photoinitiators, which generate toxic side products, and the irreversibility of the process. Hence, the design of a versatile approach that circumvents these issues represents a major scientific challenge. Herein, we report a two-photon absorption strategy where reversible [2 + 2] cycloaddition of bis-thymines was achieved without the need for any photoinitiator. The cycloaddition and cycloreversion reactions could be induced by simply changing the irradiation wavelength, and repeated writing and erasing cycles were performed. The simplicity, reversibility, and biocompatibility of this strategy open up a whole new toolbox for applications across a wide variety of scientific fields.

7.
Soft Matter ; 14(8): 1442-1448, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29392267

RESUMEN

Biological hydrogels can become many times stiffer under deformation. This unique ability has only recently been realised in fully synthetic gels. Typically, these networks are composed of semi-flexible polymers and bundles and show such large mechanical responses at very small strains, which makes them particularly suitable for application as strain-responsive materials. In this work, we introduced strain-responsiveness by crosslinking the architecture with a multi-functional virus-like particle. At high stresses, we find that the virus particles disintegrate, which creates an (irreversible) mechanical energy dissipation pathway, analogous to the high stress response of fibrin networks. A cooling-heating cycle allows for re-crosslinking at the damaged site, which gives rise to much stronger hydrogels. Virus particles and capsids are promising drug delivery vehicles and our approach offers an effective strategy to trigger the release mechanically without compromising the mechanical integrity of the host material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...