Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-22123849

RESUMEN

A Caenorhabditis elegans insulin-like signaling pathway regulates development, metabolism, and longevity. We detected abundant DAF-2 insulin-like receptor protein mainly in the nervous system, consistent with the assignment of DAF-2 pathway regulation of longevity to the nervous system. DAF-2 abundance in the nervous system is dependent on food intake, showing environmental modulation of pathway signaling. DAF-2 abundance is not dependent on downstream PI-3 kinase to DAF-16 transcription factor signaling. The modulation of DAF-2 protein level by nutritional status may constitute an important component in the irreversible commitment to dauer arrest.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Fenómenos Fisiológicos de la Nutrición , Receptor de Insulina/metabolismo , Alelos , Animales , Proteínas de Caenorhabditis elegans/genética , Regulación hacia Abajo , Ambiente , Mutación/genética , Neuronas/citología , Neuronas/metabolismo , Transporte de Proteínas , Receptor de Insulina/genética , Transducción de Señal
2.
Artículo en Inglés | MEDLINE | ID: mdl-18419309

RESUMEN

A systematic genome-wide RNA interference screen was performed in the Caenorhabditis elegans lin-15b;eri-1 strain, which has an enhanced response to double-stranded RNA including the nervous system, to identify life-span regulatory factors. In total, 16,757 genes were examined, revealing 115 gene inactivations that extended life span. A more stringent longitudinal analysis revealed 18 gene inactivations that induced the greatest increase in life span (10-90%), all of which extended life span when inactivated either in eri-1 alone or in a second strain with an enhanced response to double-stranded RNA, eri-3. Most reduced the rate of aging, implying that animals aged more slowly. As was the case in previous studies, genes critical for metabolism caused the greatest extension of longevity. Extension of life span occurs through disparate mechanisms as increased resistance to thermal stress, oxidative damage, and decreased age pigment accumulation analysis of the 18 stronger positives failed to demonstrate a correlation between enhanced stress resistance and decreased lysosomal function. Consistently, aps-3 and lys-10, two genes annotated to have lysosomal functions, extended life span when inactivated without enhancing stress resistance. The results of this study reinforce the importance of metabolism, mitochondrial and lysosomal functions, genomic stability, and stress resistance on animal life-span determination.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Genes de Helminto , Longevidad/genética , Envejecimiento/genética , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Resistencia a Medicamentos/genética , Respuesta al Choque Térmico/genética , Mutación , Paraquat/toxicidad , Pigmentación/genética , Interferencia de ARN , Receptor de Insulina/genética , Receptor de Insulina/fisiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-17381276

RESUMEN

The Caenorhabditis elegans microRNAs (miRNAs) lin-4 and let-7 promote transitions between stage-specific events in development by down-regulating the translation of their target genes. Expression of let-7 is required at the fourth larval stage for the proper transition from larval to differentiated, adult fates in the hypodermis; however, it was not known whether expression of let-7 is sufficient to specify these adult fates. To test this, we created fusion genes between lin-4 and let-7 that direct the expression of let-7 two stages early, at the L2 stage. We find that animals bearing the fusion genes show precocious adult development at the L4 stage, indicating that temporal misexpression of let-7 is sufficient to direct the larval-to-adult transition. Additionally, an RNA interference (RNAi)-based screen for enhancers of the precocious phenotype identified the period ortholog lin-42, among other genes, which are candidate modulators of the effects of let-7 expression. let-7 is conserved throughout bilaterian phylogeny, and orthologs of its targets have roles in vertebrate development, suggesting the importance of understanding how let-7 promotes terminal differentiation in C. elegans and other organisms.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , MicroARNs/genética , ARN de Helminto/genética , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Fusión Génica , Fenotipo , Regiones Promotoras Genéticas , Factores de Transcripción/genética
5.
Curr Biol ; 11(24): 1950-7, 2001 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-11747821

RESUMEN

C. elegans insulin-like signaling regulates metabolism, development, and life span. This signaling pathway negatively regulates the activity of the forkhead transcription factor DAF-16. daf-16 encodes multiple isoforms that are expressed in distinct tissue types and are probable orthologs of human FKHRL1, FKHR, and AFX. We show that human FKHRL1 can partially replace DAF-16, proving the orthology. In mammalian cells, insulin and insulin-like growth factor signaling activate AKT/PKB kinase to negatively regulate the nuclear localization of DAF-16 homologs (reviewed in ). We show that the absence of AKT consensus sites on DAF-16 is sufficient to cause dauer arrest in daf-2(+) animals, proving that daf-16 is the major output of insulin signaling in C. elegans. FKHR, FKRHL1, and AFX may similarly be the major outputs of mammalian insulin signaling. daf-2 insulin signaling, via AKT kinases, negatively regulates DAF-16 by controlling its nuclear localization. Surprisingly, we find that daf-7 TGF-beta signaling also regulates DAF-16 nuclear localization specifically at the time when the animal makes the commitment between diapause and reproductive development. daf-16 function is supported by the combined action of two distinct promoter/enhancer elements, whereas the coding sequences of two major DAF-16 isoforms are interchangeable. Together, these observations suggest that the combined effects of transcriptional and posttranslational regulation of daf-16 transduce insulin-like signals in C. elegans and perhaps more generally.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica/fisiología , Insulina/metabolismo , Receptor de Insulina/fisiología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Animales , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead , Humanos
6.
Artículo en Inglés | MEDLINE | ID: mdl-11701657

RESUMEN

The genetic analysis of life span has only begun in mammals, invertebrates, such as Caenorhabditis elegans and Drosophila, and yeast. Even at this primitive stage of the genetic analysis of aging, the physiological observations that rate of metabolism is intimately tied to life span is supported. In many examples from mice to worms to flies to yeast, genetic variants that affect life span also modify metabolism. Insulin signaling regulates life span coordinately with reproduction, metabolism, and free radical protective gene regulation in C. elegans. This may be related to the findings that caloric restriction also regulates mammalian aging, perhaps via the modulation of insulin-like signaling pathways. The nervous system has been implicated as a key tissue where insulin-like signaling and free radical protective pathways regulate life span in C. elegans and Drosophila. Genes that determine the life span could act in neuroendocrine cells in diverse animals. The involvement of insulin-like hormones suggests that the plasticity in life spans evident in animal phylogeny may be due to variation in the timing of release of hormones that control vitality and mortality as well as variation in the response to those hormones. Pedigree analysis of human aging may reveal variations in the orthologs of the insulin pathway genes and coupled pathways that regulate invertebrate aging. Thus, genetic approaches may identify a set of circuits that was established in ancestral metazoans to regulate their longevity.


Asunto(s)
Envejecimiento/genética , Animales , Humanos , Filogenia , Polimorfismo Genético
8.
Cell ; 106(1): 23-34, 2001 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-11461699

RESUMEN

RNAi is a gene-silencing phenomenon triggered by double-stranded (ds) RNA and involves the generation of 21 to 26 nt RNA segments that guide mRNA destruction. In Caenorhabditis elegans, lin-4 and let-7 encode small temporal RNAs (stRNAs) of 22 nt that regulate stage-specific development. Here we show that inactivation of genes related to RNAi pathway genes, a homolog of Drosophila Dicer (dcr-1), and two homologs of rde-1 (alg-1 and alg-2), cause heterochronic phenotypes similar to lin-4 and let-7 mutations. Further we show that dcr-1, alg-1, and alg-2 are necessary for the maturation and activity of the lin-4 and let-7 stRNAs. Our findings suggest that a common processing machinery generates guide RNAs that mediate both RNAi and endogenous gene regulation.


Asunto(s)
Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Filogenia , ARN de Helminto/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Cartilla de ADN , Drosophila/genética , Embrión no Mamífero/fisiología , Femenino , Silenciador del Gen , Genes de Helminto , Genes Reporteros , Impresión Genómica , Heterocigoto , Larva , Luciferasas/genética , Reacción en Cadena de la Polimerasa
9.
Genes Dev ; 15(6): 672-86, 2001 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11274053

RESUMEN

The activity of the DAF-2 insulin-like receptor is required for Caenorhabditis elegans reproductive growth and normal adult life span. Informatic analysis identified 37 C. elegans genes predicted to encode insulin-like peptides. Many of these genes are divergent insulin superfamily members, and many are clustered, indicating recent diversification of the family. The ins genes are primarily expressed in neurons, including sensory neurons, a subset of which are required for reproductive development. Structural predictions and likely C-peptide cleavage sites typical of mammalian insulins suggest that ins-1 is most closely related to insulin. Overexpression of ins-1, or expression of human insulin under the control of ins-1 regulatory sequences, causes partially penetrant arrest at the dauer stage and enhances dauer arrest in weak daf-2 mutants, suggesting that INS-1 and human insulin antagonize DAF-2 insulin-like signaling. A deletion of the ins-1 coding region does not enhance or suppress dauer arrest, indicating a functional redundancy among the 37 ins genes. Of five other ins genes tested, the only other one bearing a predicted C peptide also antagonizes daf-2 signaling, whereas four ins genes without a C peptide do not, indicating functional diversity within the ins family.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/metabolismo , Proteínas del Helminto/genética , Insulina/genética , Insulina/farmacología , Receptor de Insulina/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Clonación Molecular , Elementos de Facilitación Genéticos , Eliminación de Gen , Proteínas del Helminto/química , Proteínas del Helminto/metabolismo , Humanos , Insulina/química , Insulina/metabolismo , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Fenotipo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Temperatura , Factores de Tiempo
10.
Development ; 128(5): 779-90, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11171402

RESUMEN

Caenorhabditis elegans has three POU homeobox genes, unc-86, ceh-6 and ceh-18. ceh-6 is the ortholog of vertebrate Brn1, Brn2, SCIP/Oct6 and Brn4 and fly Cf1a/drifter/ventral veinless. Comparison of C. elegans and C. briggsae CEH-6 shows that it is highly conserved. C. elegans has only three POU homeobox genes, while Drosophila has five that fall into four families. Immunofluorescent detection of the CEH-6 protein reveals that it is expressed in particular head and ventral cord neurons, as well as in rectal epithelial cells, and in the excretory cell, which is required for osmoregulation. A deletion of the ceh-6 locus causes 80% embryonic lethality. During morphogenesis, embryos extrude cells in the rectal region of the tail or rupture, indicative of a defect in the rectal epithelial cells that express ceh-6. Those embryos that hatch are sick and develop vacuoles, a phenotype similar to that caused by laser ablation of the excretory cell. A GFP reporter construct expressed in the excretory cell reveals inappropriate canal structures in the ceh-6 null mutant. Members of the POU-III family are expressed in tissues involved in osmoregulation and secretion in a number of species. We propose that one evolutionary conserved function of the POU-III transcription factor class could be the regulation of genes that mediate secretion/osmoregulation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Genes Homeobox , Proteínas de Homeodominio/metabolismo , Neuronas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/fisiología , Mapeo Cromosómico , Clonación Molecular , Células Epiteliales/metabolismo , Genes de Helminto , Genes Reporteros , Proteínas de Homeodominio/química , Datos de Secuencia Molecular , Fenotipo , Filogenia , Alineación de Secuencia , Equilibrio Hidroelectrolítico
11.
J Biol Chem ; 276(16): 13402-10, 2001 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-11124266

RESUMEN

In Caenorhabditis elegans, an insulin-like signaling pathway to phosphatidylinositol 3-kinase (PI 3-kinase) and AKT negatively regulates the activity of DAF-16, a Forkhead transcription factor. We show that in mammalian cells, C. elegans DAF-16 is a direct target of AKT and that AKT phosphorylation generates 14-3-3 binding sites and regulates the nuclear/cytoplasmic distribution of DAF-16 as previously shown for its mammalian homologs FKHR and FKHRL1. In vitro, interaction of AKT- phosphorylated DAF-16 with 14-3-3 prevents DAF-16 binding to its target site in the insulin-like growth factor binding protein-1 gene, the insulin response element. In HepG2 cells, insulin signaling to PI 3-kinase/AKT inhibits the ability of a GAL4 DNA binding domain/DAF-16 fusion protein to activate transcription via the insulin-like growth factor binding protein-1-insulin response element, but not the GAL4 DNA binding site, which suggests that insulin inhibits the interaction of DAF-16 with its cognate DNA site. Elimination of the DAF-16/1433 association by mutation of the AKT/14-3-3 sites in DAF-16, prevents 14-3-3 inhibition of DAF-16 DNA binding and insulin inhibition of DAF-16 function. Similarly, inhibition of the DAF-16/14-3-3 association by exposure of cells to the PI 3-kinase inhibitor LY294002, enhances DAF-16 DNA binding and transcription activity. Surprisingly constitutively nuclear DAF-16 mutants that lack AKT/14-3-3 binding sites also show enhanced DNA binding and transcription activity in response to LY294002, pointing to a 14-3-3-independent mode of regulation. Thus, our results demonstrate at least two mechanisms, one 14-3-3-dependent and the other 14-3-3-independent, whereby PI 3-kinase signaling regulates DAF-16 DNA binding and transcription function.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Factores de Transcripción/metabolismo , Transcripción Genética , Tirosina 3-Monooxigenasa/metabolismo , Proteínas 14-3-3 , Secuencia de Aminoácidos , Animales , Sitios de Unión , Caenorhabditis elegans , Secuencia de Consenso , Factores de Transcripción Forkhead , Humanos , Mamíferos , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo , Transfección , Células Tumorales Cultivadas
12.
Genetics ; 157(1): 199-209, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11139502

RESUMEN

The Caenorhabditis elegans heterochronic gene lin-14 specifies the temporal sequence of postembryonic developmental events. lin-14, which encodes differentially spliced LIN-14A and LIN-14B1/B2 protein isoforms, acts at distinct times during the first larval stage to specify first and second larval stage-specific cell lineages. Proposed models for the molecular basis of these two lin-14 gene activities have included the production of functionally distinct isoforms and the generation of a temporal gradient of LIN-14 protein. We report here that loss of the LIN-14B1/B2 isoforms alone affects one of the two lin-14 temporal patterning functions, the specification of second larval stage lineages. A temporal expression difference between LIN-14A and LIN-14B1/B2 is not responsible for the stage-specific phenotype: protein levels of all LIN-14 isoforms are high in early first larval stage animals and decrease during the first larval stage. However, LIN-14A can partially substitute for LIN-14B1/B2 when expressed at a higher-than-normal level in the late L1 stage. These data indicate that LIN-14B1/B2 isoforms do not provide a distinct function of the lin-14 locus in developmental timing but rather may contribute to an overall level of LIN-14 protein that is the critical determinant of temporal cell fate.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Genes de Helminto , Proteínas del Helminto/genética , Mutación , Proteínas Nucleares , Alelos , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo/genética , Caenorhabditis/genética , Secuencia Conservada , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Datos de Secuencia Molecular , Fenotipo , Isoformas de Proteínas/genética , Homología de Secuencia de Aminoácido , Especificidad de la Especie
13.
Nature ; 408(6808): 86-9, 2000 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-11081512

RESUMEN

Two small RNAs regulate the timing of Caenorhabditis elegans development. Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA, and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs. Here we have detected let-7 RNAs of approximately 21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila, at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.


Asunto(s)
Caenorhabditis elegans/genética , Secuencia Conservada , ARN/genética , Adulto , Animales , Secuencia de Bases , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Filogenia , ARN/química , ARN de Helminto , Especificidad de la Especie
14.
Science ; 290(5489): 147-50, 2000 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-11021802

RESUMEN

An insulinlike signaling pathway controls Caenorhabditis elegans aging, metabolism, and development. Mutations in the daf-2 insulin receptor-like gene or the downstream age-1 phosphoinositide 3-kinase gene extend adult life-span by two- to threefold. To identify tissues where this pathway regulates aging and metabolism, we restored daf-2 pathway signaling to only neurons, muscle, or intestine. Insulinlike signaling in neurons alone was sufficient to specify wild-type life-span, but muscle or intestinal signaling was not. However, restoring daf-2 pathway signaling to muscle rescued metabolic defects, thus decoupling regulation of life-span and metabolism. These findings point to the nervous system as a central regulator of animal longevity.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/fisiología , Neuronas/fisiología , Fosfatidilinositol 3-Quinasas , Receptor de Insulina/metabolismo , Transducción de Señal , Envejecimiento/genética , Animales , Caenorhabditis elegans/genética , Catalasa/genética , Catalasa/metabolismo , Regulación de la Expresión Génica , Genes de Helminto , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Intestinos/citología , Intestinos/fisiología , Larva/fisiología , Longevidad , Músculos/citología , Músculos/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Fenotipo , Regiones Promotoras Genéticas , Receptor de Insulina/genética , Proteínas Recombinantes de Fusión/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
15.
Proc Natl Acad Sci U S A ; 97(19): 10412-7, 2000 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-10973497

RESUMEN

Insulin negatively regulates expression of the insulin-like growth factor binding protein 1 (IGFBP-1) gene by means of an insulin-responsive element (IRE) that also contributes to glucocorticoid stimulation of this gene. We find that the Caenorhabditis elegans protein DAF-16 binds the IGFBP-1 small middle dotIRE with specificity similar to that of the forkhead (FKH) factor(s) that act both to enhance glucocorticoid responsiveness and to mediate the negative effect of insulin at this site. In HepG2 cells, DAF-16 and its mammalian homologs, FKHR, FKHRL1, and AFX, activate transcription through the IGFBP-1.IRE; this effect is inhibited by the viral oncoprotein E1A, but not by mutants of E1A that fail to interact with the coactivator p300/CREB-binding protein (CBP). We show that DAF-16 and FKHR can interact with both the KIX and E1A/SRC interaction domains of p300/CBP, as well as the steroid receptor coactivator (SRC). A C-terminal deletion mutant of DAF-16 that is nonfunctional in C. elegans fails to bind the KIX domain of CBP, fails to activate transcription through the IGFBP-1.IRE, and inhibits activation of the IGFBP-1 promoter by glucocorticoids. Thus, the interaction of DAF-16 homologs with the KIX domain of CBP is essential to basal and glucocorticoid-stimulated transactivation. Although AFX interacts with the KIX domain of CBP, it does not interact with SRC and does not respond to glucocorticoids or insulin. Thus, we conclude that DAF-16 and FKHR act as accessory factors to the glucocorticoid response, by recruiting the p300/CBP/SRC coactivator complex to an FKH factor site in the IGFBP-1 promoter, which allows the cell to integrate the effects of glucocorticoids and insulin on genes that carry this site.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas E1A de Adenovirus/metabolismo , Secuencia de Bases , Proteína de Unión a CREB , Cartilla de ADN , Factores de Transcripción Forkhead , Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Humanos , Insulina/farmacología , Unión Proteica , Transcripción Genética/efectos de los fármacos , Células Tumorales Cultivadas
16.
Mol Cell ; 5(4): 659-69, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10882102

RESUMEN

Null mutations in the C. elegans heterochronic gene lin-41 cause precocious expression of adult fates at larval stages. Increased lin-41 activity causes the opposite phenotype, reiteration of larval fates. let-7 mutations cause similar reiterated heterochronic phenotypes that are suppressed by lin-41 mutations, showing that lin-41 is negatively regulated by let-7. lin-41 negatively regulates the timing of LIN-29 adult specification transcription factor expression. lin-41 encodes an RBCC protein, and two elements in the lin-413'UTR are complementary to the 21 nucleotide let-7 regulatory RNA. A lin-41::GFP fusion gene is downregulated in the tissues affected by lin-41 at the time that the let-7 regulatory RNA is upregulated. We suggest that late larval activation of let-7 RNA expression downregulates LIN-41 to relieve inhibition of lin-29.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/embriología , Proteínas de Unión al ADN/metabolismo , Genes de Helminto , ARN de Helminto/metabolismo , Factores de Transcripción/metabolismo , Regiones no Traducidas 3' , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Proteínas del Helminto/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Factores de Tiempo , Distribución Tisular , Factores de Transcripción/genética , Dedos de Zinc
17.
Nature ; 403(6772): 901-6, 2000 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-10706289

RESUMEN

The C. elegans heterochronic gene pathway consists of a cascade of regulatory genes that are temporally controlled to specify the timing of developmental events. Mutations in heterochronic genes cause temporal transformations in cell fates in which stage-specific events are omitted or reiterated. Here we show that let-7 is a heterochronic switch gene. Loss of let-7 gene activity causes reiteration of larval cell fates during the adult stage, whereas increased let-7 gene dosage causes precocious expression of adult fates during larval stages. let-7 encodes a temporally regulated 21-nucleotide RNA that is complementary to elements in the 3' untranslated regions of the heterochronic genes lin-14, lin-28, lin-41, lin-42 and daf-12, indicating that expression of these genes may be directly controlled by let-7. A reporter gene bearing the lin-41 3' untranslated region is temporally regulated in a let-7-dependent manner. A second regulatory RNA, lin-4, negatively regulates lin-14 and lin-28 through RNA-RNA interactions with their 3' untranslated regions. We propose that the sequential stage-specific expression of the lin-4 and let-7 regulatory RNAs triggers transitions in the complement of heterochronic regulatory proteins to coordinate developmental timing.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/crecimiento & desarrollo , Genes de Cambio , ARN de Helminto/fisiología , ARN Mensajero/fisiología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Caenorhabditis elegans/genética , ADN de Helmintos , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto , Datos de Secuencia Molecular , Biosíntesis de Proteínas , ARN de Helminto/genética , ARN Mensajero/genética , Supresión Genética , Factores de Transcripción/genética
18.
Nature ; 403(6769): 560-4, 2000 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-10676966

RESUMEN

The functions of serotonin have been assigned through serotonin-receptor-specific drugs and mutants; however, because a constellation of receptors remains when a single receptor subtype is inhibited, the coordinate responses to modulation of serotonin levels may be missed. Here we report the analysis of behavioural and neuroendocrine defects caused by a complete lack of serotonin signalling. Analysis of the C. elegans genome sequence showed that there is a single tryptophan hydroxylase gene (tph-1)-the key enzyme for serotonin biosynthesis. Animals bearing a tph-1 deletion mutation do not synthesize serotonin but are fully viable. The tph-1 mutant shows abnormalities in behaviour and metabolism that are normally coupled with the sensation and ingestion of food: rates of feeding and egg laying are decreased; large amounts of fat are stored; reproductive lifespan is increased; and some animals arrest at the metabolically inactive dauer stage. This metabolic dysregulation is, in part, due to downregulation of transforming growth factor-beta and insulin-like neuroendocrine signals. The action of the C. elegans serotonergic system in metabolic control is similar to mammalian serotonergic input to metabolism and obesity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/fisiología , Serotonina/fisiología , Triptófano Hidroxilasa/metabolismo , Secuencia de Aminoácidos , Animales , Conducta Animal , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Conducta Alimentaria , Eliminación de Gen , Proteínas del Helminto/metabolismo , Longevidad , Datos de Secuencia Molecular , Reproducción , Transducción de Señal , Somatomedinas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Triptófano Hidroxilasa/genética
19.
Proc Natl Acad Sci U S A ; 97(1): 460-5, 2000 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-10618440

RESUMEN

Converging TGF-beta and insulin-like neuroendocrine signaling pathways regulate whether Caenorhabditis elegans develops reproductively or arrests at the dauer larval stage. We examined whether neurotransmitters act in the dauer entry or recovery pathways. Muscarinic agonists promote recovery from dauer arrest induced by pheromone as well as by mutations in the TGF-beta pathway. Dauer recovery in these animals is inhibited by the muscarinic antagonist atropine. Muscarinic agonists do not induce dauer recovery of either daf-2 or age-1 mutant animals, which have defects in the insulin-like signaling pathway. These data suggest that a metabotropic acetylcholine signaling pathway activates an insulin-like signal during C. elegans dauer recovery. Analogous and perhaps homologous cholinergic regulation of mammalian insulin release by the autonomic nervous system has been noted. In the parasitic nematode Ancylostoma caninum, the dauer larval stage is the infective stage, and recovery to the reproductive stage normally is induced by host factors. Muscarinic agonists also induce and atropine potently inhibits in vitro recovery of A. caninum dauer arrest. We suggest that host or parasite insulin-like signals may regulate recovery of A. caninum and could be potential targets for antihelminthic drugs.


Asunto(s)
Ancylostoma/metabolismo , Caenorhabditis elegans/metabolismo , Larva/metabolismo , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Transducción de Señal , Ancylostomatoidea/metabolismo , Animales , Arecolina/farmacología , Atropina/farmacología , Insulina/metabolismo , Neuropéptidos/farmacología , Neurotransmisores/agonistas , Neurotransmisores/antagonistas & inhibidores , Oxotremorina/farmacología , Pilocarpina/farmacología
20.
Dev Genes Evol ; 210(11): 564-9, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11180807

RESUMEN

ceh-14, a LIM class homeobox gene from Caenorhabditis elegans, is the orthologue of the vertebrate Lhx3/Lhx4 genes. ceh-14 reporter constructs are expressed in several different cell types: head and tail neurons, spermatheca and hypodermis. An intriguing aspect of the hypodermal expression pattern is that it takes the form of a gradient which is strongest in the central body region in L4 to young adult hermaphrodites. Promoter deletion analyses revealed that important regulatory elements for hypodermal expression are located within the transcribed region of ceh-14. Since a large part of the hypodermis is a syncytium, we hypothesized that this expression is triggered in a non-cell-autonomous fashion, a possible source being the underlying gonad. In males, which have a different gonadal organisation, the ceh-14 reporter constructs are expressed in a gradient that is strongest in the tail. By laser ablation of the gonadal precursor cells we found that ceh-14 reporter construct expression is eliminated in the hermaphrodite hypodermis, suggesting that the gonad plays a role in the generation of the gradient. Several signaling pathways are known in the gonad and the vulva, thus we crossed the mutations lin-3, egl-17 and lin-12 with the ceh-14 reporter lines. However, the expression of the reporter constructs is not affected in these mutant backgrounds. This suggests that another, presently unknown, signal triggers the graded hypodermal expression.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Genes Reporteros , Gónadas/metabolismo , Proteínas de Homeodominio/genética , Transducción de Señal , Animales , Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Regiones Promotoras Genéticas , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...