Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 55(2): 150-162.e6, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32857951

RESUMEN

The interplay between pancreatic epithelium and the surrounding microenvironment is pivotal for pancreas formation and differentiation as well as adult organ homeostasis. The mesenchyme is the main component of the embryonic pancreatic microenvironment, yet its cellular identity is broadly defined, and whether it comprises functionally distinct cell subsets is not known. Using genetic lineage tracing, transcriptome, and functional studies, we identified mesenchymal populations with different roles during pancreatic development. Moreover, we showed that Pbx transcription factors act within the mouse pancreatic mesenchyme to define a pro-endocrine specialized niche. Pbx directs differentiation of endocrine progenitors into insulin- and glucagon-positive cells through non-cell-autonomous regulation of ECM-integrin interactions and soluble molecules. Next, we measured functional conservation between mouse and human pancreatic mesenchyme by testing identified mesenchymal factors in an iPSC-based differentiation model. Our findings provide insights into how lineage-specific crosstalk between epithelium and neighboring mesenchymal cells underpin the generation of different pancreatic cell types.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/metabolismo , Mesodermo/metabolismo , Páncreas/metabolismo , Animales , Sistema Endocrino , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones Transgénicos , Organogénesis/fisiología , Páncreas/patología
2.
Artículo en Inglés | MEDLINE | ID: mdl-31767653

RESUMEN

Direct lineage reprogramming of abundant and accessible cells into therapeutically useful cell types holds tremendous potential in regenerative medicine. To date, a number of different cell types have been generated by lineage reprogramming methods, including cells from the neural, cardiac, hepatic, and pancreatic lineages. The success of this strategy relies on developmental biology and the knowledge of cell-fate-defining transcriptional networks. Hepatocytes represent a prime target for ß cell conversion for numerous reasons, including close developmental origin, accessibility, and regenerative potential. We present here an overview of pancreatic and hepatic development, with a particular focus on the mechanisms underlying the divergence between the two cell lineages. Additionally, we discuss to what extent this lineage relationship can be exploited in efforts to reprogram one cell type into the other and whether such an approach may provide a suitable strategy for regenerative therapies of diabetes.


Asunto(s)
Linaje de la Célula , Plasticidad de la Célula , Reprogramación Celular , Hígado/fisiología , Páncreas/fisiología , Animales , Diferenciación Celular , Diabetes Mellitus/fisiopatología , Hepatocitos/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Ligandos , Hígado/embriología , Ratones , Páncreas/embriología , Regeneración , Factores de Transcripción/metabolismo
3.
Cell Reprogram ; 20(4): 215-224, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29989433

RESUMEN

Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) syndrome is a rare monogenic disease with autosomal dominant inheritance caused by mutations in the TP63 gene, leading to progressive corneal keratinocyte loss, limbal stem cell deficiency (LSCD), and eventually blindness. Currently, there is no treatment available to cure or slow down the keratinocyte loss. Human oral mucosal epithelial stem cells (hOMESCs), which are a mixed population of keratinocyte precursor stem cells, are used as source of autologous tissue for treatment of bilateral LSCD. However, hOMESCs from EEC patients have a reduced life span due to TP63 mutations and cannot be used for autologous transplantation. Human induced pluripotent stem cells (hiPSCs) represent a potentially unlimited source of autologous limbal stem cell for EEC patients and can be genetically modified by genome editing technologies to correct the disease ex vivo before transplantation. In this study, we describe for the first time the generation of integration-free EEC-hiPSCs from hOMESCs of EEC patients by Sendai virus vector and episomal vector-based reprogramming. The generated hiPSC clones expressed pluripotency markers and were successfully differentiated into derivatives of the three germ layers, as well as toward corneal epithelium. These cells may be used for EEC disease modeling and open perspectives for applications in cell therapy of LSCD.


Asunto(s)
Biomarcadores/análisis , Diferenciación Celular , Labio Leporino/patología , Fisura del Paladar/patología , Displasia Ectodérmica/patología , Células Madre Pluripotentes Inducidas/patología , Mucosa Bucal/patología , Células Cultivadas , Labio Leporino/genética , Labio Leporino/metabolismo , Fisura del Paladar/genética , Fisura del Paladar/metabolismo , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mucosa Bucal/metabolismo , Mutación , Fenotipo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
4.
Nat Commun ; 8: 14127, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28193997

RESUMEN

The development of a successful lineage reprogramming strategy of liver to pancreas holds promises for the treatment and potential cure of diabetes. The liver is an ideal tissue source for generating pancreatic cells, because of its close developmental origin with the pancreas and its regenerative ability. Yet, the molecular bases of hepatic and pancreatic cellular plasticity are still poorly understood. Here, we report that the TALE homeoprotein TGIF2 acts as a developmental regulator of the pancreas versus liver fate decision and is sufficient to elicit liver-to-pancreas fate conversion both ex vivo and in vivo. Hepatocytes expressing Tgif2 undergo extensive transcriptional remodelling, which represses the original hepatic identity and, over time, induces a pancreatic progenitor-like phenotype. Consistently, in vivo forced expression of Tgif2 activates pancreatic progenitor genes in adult mouse hepatocytes. This study uncovers the reprogramming activity of TGIF2 and suggests a stepwise reprogramming paradigm, whereby a 'lineage-restricted' dedifferentiation step precedes the identity switch.


Asunto(s)
Reprogramación Celular/genética , Proteínas de Homeodominio/genética , Hígado/metabolismo , Páncreas/metabolismo , Proteínas Represoras/genética , Células Madre/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hepatocitos/citología , Hepatocitos/metabolismo , Proteínas de Homeodominio/metabolismo , Hígado/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Páncreas/citología , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...