Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 72018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29405914

RESUMEN

Regenerative therapy for degenerative spine disorders requires the identification of cells that can slow down and possibly reverse degenerative processes. Here, we identify an unanticipated wound-specific notochord sheath cell subpopulation that expresses Wilms Tumor (WT) 1b following injury in zebrafish. We show that localized damage leads to Wt1b expression in sheath cells, and that wt1b+cells migrate into the wound to form a stopper-like structure, likely to maintain structural integrity. Wt1b+sheath cells are distinct in expressing cartilage and vacuolar genes, and in repressing a Wt1b-p53 transcriptional programme. At the wound, wt1b+and entpd5+ cells constitute separate, tightly-associated subpopulations. Surprisingly, wt1b expression at the site of injury is maintained even into adult stages in developing vertebrae, which form in an untypical manner via a cartilage intermediate. Given that notochord cells are retained in adult intervertebral discs, the identification of novel subpopulations may have important implications for regenerative spine disorder treatments.


Asunto(s)
Regeneración Nerviosa , Neuroglía/química , Neuroglía/fisiología , Notocorda/lesiones , Proteínas WT1/análisis , Cicatrización de Heridas , Animales , Movimiento Celular , Pez Cebra
2.
Bio Protoc ; 8(23): e3100, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30596125

RESUMEN

Zebrafish have become an increasingly important model organism in the field of wound healing and regenerative medicine, due to their high regenerative capacity coupled with high-resolution imaging in living animals. In a recent study, we described multiple physical and chemical methods to induce notochord injury that led to highly specific transcriptional responses in notochord cellular subpopulations. The notochord is a critical embryonic structure that functions to shape and pattern the vertebrae and spinal column. Here, we describe precision needle injury, tail-notochord amputation, and chemical inhibition of caveolin that trigger a wound-specific wt1b expression response in the notochord sheath cell subpopulation. We propose that these procedures can be used to study distinct cell populations that make up the cellular processes of notochord repair.

3.
J Mol Med (Berl) ; 93(2): 165-76, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25559265

RESUMEN

Anderson disease (ANDD) or chylomicron retention disease (CMRD) is a rare, hereditary lipid malabsorption syndrome associated with mutations in the SAR1B gene that is characterized by failure to thrive and hypocholesterolemia. Although the SAR1B structure has been resolved and its role in formation of coat protein II (COPII)-coated carriers is well established, little is known about the requirement for SAR1B during embryogenesis. To address this question, we have developed a zebrafish model of Sar1b deficiency based on antisense oligonucleotide knockdown. We show that zebrafish sar1b is highly conserved among vertebrates; broadly expressed during development; and enriched in the digestive tract organs, brain, and craniofacial skeleton. Consistent with ANDD symptoms of chylomicron retention, we found that dietary lipids in Sar1b-deficient embryos accumulate in enterocytes. Transgenic expression analysis revealed that Sar1b is required for growth of exocrine pancreas and liver. Furthermore, we found abnormal differentiation and maturation of craniofacial cartilage associated with defects in procollagen II secretion and absence of select, neuroD-positive neurons of the midbrain and hindbrain. The model presented here will help to systematically dissect developmental roles of Sar1b and to discover molecular and cellular mechanisms leading to organ-specific ANDD pathology. Key messages: Sar1b depletion phenotype in zebrafish resembles Anderson disease deficits. Sar1b deficiency results in multi-organ developmental deficits. Sar1b is required for dietary cholesterol uptake into enterocytes.


Asunto(s)
Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/metabolismo , Metabolismo de los Lípidos/genética , Síndromes de Malabsorción/genética , Síndromes de Malabsorción/metabolismo , Proteínas de Unión al GTP Monoméricas/deficiencia , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Huesos/embriología , Huesos/metabolismo , Encéfalo/embriología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Organogénesis/genética , Fenotipo , Pez Cebra
4.
J Med Chem ; 57(12): 5395-404, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24867590

RESUMEN

Bioorthogonal chemistry has become one of the main driving forces in current chemical biology, inspiring the search for novel biocompatible chemospecific reactions for the past decade. Alongside the well-established labeling strategies that originated the bioorthogonal paradigm, we have recently proposed the use of heterogeneous palladium chemistry and bioorthogonal Pd(0)-labile prodrugs to develop spatially targeted therapies. Herein, we report the generation of biologically inert precursors of cytotoxic gemcitabine by introducing Pd(0)-cleavable groups in positions that are mechanistically relevant for gemcitabine's pharmacological activity. Cell viability studies in pancreatic cancer cells showed that carbamate functionalization of the 4-amino group of gemcitabine significantly reduced (>23-fold) the prodrugs' cytotoxicity. The N-propargyloxycarbonyl (N-Poc) promoiety displayed the highest sensitivity to heterogeneous palladium catalysis under biocompatible conditions, with a reaction half-life of less than 6 h. Zebrafish studies with allyl, propargyl, and benzyl carbamate-protected rhodamines confirmed N-Poc as the most suitable masking group for implementing in vivo bioorthogonal organometallic chemistry.


Asunto(s)
Antimetabolitos Antineoplásicos/química , Desoxicitidina/análogos & derivados , Paladio/química , Profármacos/química , Animales , Antimetabolitos Antineoplásicos/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Carbamatos/química , Carbamatos/metabolismo , Carbamatos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Desoxicitidina/química , Desoxicitidina/farmacología , Portadores de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Embrión no Mamífero/metabolismo , Humanos , Nanopartículas , Poliestirenos , Profármacos/metabolismo , Profármacos/farmacología , Rodaminas/química , Rodaminas/metabolismo , Rodaminas/farmacología , Relación Estructura-Actividad , Pez Cebra , Gemcitabina
5.
Nat Commun ; 5: 3277, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24522696

RESUMEN

A bioorthogonal organometallic reaction is a biocompatible transformation undergone by a synthetic material exclusively through the mediation of a non-biotic metal source; a selective process used to label biomolecules and activate probes in biological environs. Here we report the in vitro bioorthogonal generation of 5-fluorouracil from a biologically inert precursor by heterogeneous Pd(0) catalysis. Although independently harmless, combined treatment of 5-fluoro-1-propargyl-uracil and Pd(0)-functionalized resins exhibits comparable antiproliferative properties to the unmodified drug in colorectal and pancreatic cancer cells. Live-cell imaging and immunoassay studies demonstrate that the cytotoxic activity of the prodrug/Pd(0)-resin combination is due to the in situ generation of 5-fluorouracil. Pd(0)-resins can be carefully implanted in the yolk sac of zebrafish embryos and display excellent biocompatibility and local catalytic activity. The in vitro efficacy shown by this masking/activation strategy underlines its potential to develop a bioorthogonally activated prodrug approach and supports further in vivo investigations.


Asunto(s)
Antimetabolitos Antineoplásicos/química , Fluorouracilo/análogos & derivados , Paladio/química , Profármacos/química , Animales , Antimetabolitos Antineoplásicos/uso terapéutico , Remoción de Radical Alquila , Evaluación Preclínica de Medicamentos , Fluorouracilo/química , Fluorouracilo/uso terapéutico , Células HCT116 , Humanos , Pez Cebra
6.
Cancer Res ; 74(1): 38-43, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24247717

RESUMEN

ENOX1 is a highly conserved NADH oxidase that helps to regulate intracellular nicotinamide adenine dinucleotide levels in many cell types, including endothelial cells. Pharmacologic and RNA interference (RNAi)-mediated suppression of ENOX1 impairs surrogate markers of tumor angiogenesis/vasculogenesis, providing support for the concept that ENOX1 represents an antiangiogenic druggable target. However, direct genetic evidence that demonstrates a role for ENOX1 in vascular development is lacking. In this study, we exploited a zebrafish embryonic model of development to address this question. Whole-mount in situ hybridization coupled with immunofluorescence performed on zebrafish embryos demonstrate that enox1 message and translated protein are expressed in most tissues, and its expression is enriched in blood vessels and heart. Morpholino-mediated suppression of Enox1 in Tg(fli1-eGFP) and Tg(flk1-eGFP) zebrafish embryos significantly impairs the development of vasculature and blood circulation. Using in vivo multiphoton microscopy, we show that morpholino-mediated knockdown of enox1 increases NADH levels, consistent with loss of enzyme. VJ115 is a small-molecule inhibitor of Enox1's oxidase activity shown to increase intracellular NADH in endothelial cells; we used VJ115 to determine if the oxidase activity was crucial for vascular development. We found that VJ115 suppressed vasculogenesis in Tg(fli1-eGFP) embryos and impaired circulation. Previously, it was shown that suppression of ENOX1 radiosensitizes proliferating tumor vasculature, a consequence of enhanced endothelial cell apoptosis. Thus, our current findings, coupled with previous research, support the hypothesis that ENOX1 represents a potential cancer therapy target, one that combines molecular targeting with cytotoxic sensitization.


Asunto(s)
Endotelio Vascular/embriología , Endotelio Vascular/crecimiento & desarrollo , Complejos Multienzimáticos/fisiología , NADH NADPH Oxidorreductasas/fisiología , Animales , Animales Modificados Genéticamente , Endotelio Vascular/enzimología , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Neovascularización Fisiológica/fisiología , Pez Cebra
7.
Dis Model Mech ; 6(2): 332-41, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23223679

RESUMEN

Atrial fibrillation (AF) is the most common cardiac arrhythmia and carries a significant risk of stroke and heart failure. The molecular etiologies of AF are poorly understood, leaving patients with limited therapeutic options. AF has been recognized as an inherited disease in almost 30% of patient cases. However, few genetic loci have been identified and the mechanisms linking genetic variants to AF susceptibility remain unclear. By sequencing 193 probands with lone AF, we identified a Q76E variant within the coding sequence of the bone morphogenetic protein (BMP) antagonist gremlin-2 (GREM2) that increases its inhibitory activity. Functional modeling in zebrafish revealed that, through regulation of BMP signaling, GREM2 is required for cardiac laterality and atrial differentiation during embryonic development. GREM2 overactivity results in slower cardiac contraction rates in zebrafish, and induction of previously identified AF candidate genes encoding connexin-40, sarcolipin and atrial natriuretic peptide in differentiated mouse embryonic stem cells. By live heart imaging in zebrafish overexpressing wild-type or variant GREM2, we found abnormal contraction velocity specifically in atrial cardiomyocytes. These results implicate, for the first time, regulators of BMP signaling in human AF, providing mechanistic insights into the pathogenesis of the disease and identifying potential new therapeutic targets.


Asunto(s)
Fibrilación Atrial/genética , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Atrios Cardíacos/fisiopatología , Péptidos y Proteínas de Señalización Intercelular/genética , Miocitos Cardíacos/patología , Proteínas de Pez Cebra/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Fibrilación Atrial/complicaciones , Fibrilación Atrial/fisiopatología , Proteínas Morfogenéticas Óseas/metabolismo , Citocinas , Femenino , Regulación del Desarrollo de la Expresión Génica , Atrios Cardíacos/embriología , Atrios Cardíacos/patología , Frecuencia Cardíaca/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Datos de Secuencia Molecular , Miocitos Cardíacos/metabolismo , Organogénesis/genética , Linaje , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA