Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetologia ; 45(1): 56-65, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11845224

RESUMEN

AIMS/HYPOTHESIS: The 5'AMP-activated protein kinase is an important mediator of muscle contraction-induced glucose transport and a target for pharmacological treatment of Type II (non-insulin-dependent) diabetes mellitus. The 5'AMP-activated protein kinase can be activated by 5-aminoimidazole-4-carboxamide ribonucleoside. We hypothesised that 5-aminoimidazole-4-carboxamide ribonucleoside treatment could restore glucose homeostasis in ob/ob mice. METHODS: Lean and ob/ob mice were given 5-aminoimidazole-4-carboxamide ribonucleoside (1 mg.g body wt(-1).day(-1) s.c) or 0.9 % NaCl (vehicle) for 1-7 days. RESULTS: Short-term 5-aminoimidazole-4-carboxamide ribonucleoside treatment normalised glucose concentrations in ob/ob mice within 1 h, with effects persisting over 4 h. After 1 week of daily injections, 5-aminoimidazole-4-carboxamide ribonucleoside treatment corrected hyperglycaemia, improved glucose tolerance, and increased GLUT4 and hexokinase II protein expression in skeletal muscle, but had deleterious effects on plasma non-esterified fatty acids and triglycerides. Treatment with 5-aminoimidazole-4-carboxamide ribonucleoside increased liver glycogen in fasted and fed ob/ob mice and muscle glycogen in fasted, but not fed ob/ob and lean mice. Defects in insulin-stimulated phosphatidylinositol 3-kinase and glucose transport in skeletal muscle from ob/ob mice were not corrected by 5-aminoimidazole-4-carboxamide ribonucleoside treatment. While ex vivo insulin-stimulated glucose transport was reduced in isolated muscle from ob/ob mice, the 5-aminoimidazole-4-carboxamide ribonucleoside stimulated response was normal. CONCLUSION/INTERPRETATION: The 5-aminoimidazole-4-carboxamide ribonucleoside mediated improvements in glucose homeostasis in ob/ob mice can be explained by effects in skeletal muscle and liver. Due to the apparently deleterious effects of 5-aminoimidazole-4-carboxamide ribonucleoside on the blood lipid profile, strategies to develop tissue-specific and pathway-specific activators of 5'AMP-activated protein kinase should be considered in order to improve glucose homeostasis.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Resistencia a la Insulina , Músculo Esquelético/metabolismo , Obesidad , Ribonucleótidos/farmacología , Aminoimidazol Carboxamida/administración & dosificación , Animales , Transporte Biológico/efectos de los fármacos , Glucemia/efectos de los fármacos , Diabetes Mellitus/sangre , Diabetes Mellitus/tratamiento farmacológico , Prueba de Tolerancia a la Glucosa , Glucógeno/metabolismo , Homeostasis/efectos de los fármacos , Inyecciones Subcutáneas , Insulina/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Glucógeno Hepático/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Músculo Esquelético/efectos de los fármacos , Ribonucleótidos/administración & dosificación
2.
Am J Physiol Endocrinol Metab ; 281(6): E1255-9, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11701441

RESUMEN

Hyperglycemia leads to multiple changes in insulin signaling in skeletal muscle from people with type 2 diabetes. We hypothesized that mitogen-activated protein kinase (MAPK) signaling cascades may be directly activated by an acute exposure to high extracellular glucose concentrations. We determined whether an elevation in the extracellular glucose concentration would induce signal transduction in skeletal muscle via MAPK cascades. Epitrochlearis muscles were incubated in the presence of 5 or 25 mM glucose. Exposure of muscle to either hyperosmosis (600 mM mannitol) or insulin (6 nM) led to a marked increase in extracellular signal-regulated protein kinase (ERK)1/2 phosphorylation. Hyperosmosis elicited a 5.2-fold increase in p38 phosphorylation (P < 0.05), whereas insulin was without effect. ERK1/2 phosphorylation was not increased by high glucose exposure. After a 20-min exposure to 25 mM glucose, a tendency toward repressed (23%) p38 phosphorylation was observed (P = 0.06). No effect of high glucose was noted on signal transduction to signal transducer and activator of transcription 3 and Akt. In conclusion, short-term exposure of skeletal muscle to high levels of glucose does not appear to alter ERK1/2 or p38 MAPK phosphorylation.


Asunto(s)
Glucemia/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Músculo Esquelético/metabolismo , Animales , Mesangio Glomerular/citología , Mesangio Glomerular/efectos de los fármacos , Mesangio Glomerular/metabolismo , MAP Quinasa Quinasa 4 , Masculino , Proteína Quinasa 3 Activada por Mitógenos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Concentración Osmolar , Fosforilación , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos
3.
Endocrinology ; 142(8): 3474-82, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11459793

RESUMEN

Phosphorylation of the alpha-subunits of Na(+),K(+)-adenosine triphosphatase in response to insulin, high extracellular glucose concentration, and phorbol 12-myristate 13-acetate was investigated in isolated rat soleus muscle. All three stimuli increased alpha-subunit phosphorylation approximately 3-fold. Phorbol 12-myristate 13-acetate- and high glucose-induced phosphorylation of the alpha-subunit was completely abolished by the PKC inhibitor GF109203X, whereas insulin-stimulated phosphorylation was only partially reduced. Notably, insulin stimulation resulted in phosphorylation of the alpha-subunit on serine, threonine, and tyrosine residues, whereas high extracellular glucose or phorbol 12-myristate 13-acetate stimulation mediated phosphorylation only on serine and threonine residues. Insulin stimulation resulted in translocation of Na(+),K(+)-adenosine triphosphatase alpha(2)-subunit to the plasma membrane and increased Na(+),K(+)-adenosine triphosphatase activity in the same membrane fraction. High glucose had no effect on alpha-subunits distribution. Immunoprecipitation with antiphosphotyrosine antibody and subsequent Western blot analysis with anti-alpha(1)- and -alpha(2)-subunit antibodies revealed that both alpha(1)- and alpha(2)-subunit isoforms underwent phosphorylation on tyrosine residues in response to insulin, although with different time course and magnitude. Thus, we show that insulin-stimulated phosphorylation of Na(+),K(+)-adenosine triphosphatase alpha-subunit occurs via a PKC- and tyrosine kinase-dependent mechanism, whereas high glucose-induced phosphorylation is only PKC-dependent. Phosphorylation of Na(+),K(+)-adenosine triphosphatase alpha-subunits may be involved in regulation of Na(+),K(+)-adenosine triphosphatase activity by insulin or high extracellular glucose in skeletal muscle.


Asunto(s)
Glucosa/farmacología , Insulina/farmacología , Músculo Esquelético/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Membrana Celular/metabolismo , Inhibidores Enzimáticos/farmacología , Espacio Extracelular/metabolismo , Glucosa/metabolismo , Indoles/farmacología , Masculino , Maleimidas/farmacología , Músculo Esquelético/efectos de los fármacos , Ácidos Fosfoaminos/metabolismo , Fosforilación , Ratas , Ratas Wistar , Acetato de Tetradecanoilforbol/farmacología , Distribución Tisular/efectos de los fármacos , Tirosina/metabolismo
4.
Acta Physiol Scand ; 172(3): 227-38, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11472310

RESUMEN

Exercise has numerous growth and metabolic effects in skeletal muscle, including changes in glycogen metabolism, glucose and amino acid uptake, protein synthesis and gene transcription. However, the mechanism(s) by which exercise regulates intracellular signal transduction to the transcriptional machinery in the nucleus, thus modulating gene expression, is largely unknown. This review will provide insight on potential intracellular signalling mechanisms by which muscle contraction/exercise leads to changes in gene expression. Mitogen-activated protein kinase (MAPK) cascades are associated with increased transcriptional activity. The MAPK family members can be separated into distinct parallel pathways including the extracellular signal-regulated kinase (ERK) 1/2, the stress-activated protein kinase cascades (SAPK1/JNK and SAPK2/p38) and the extracellular signal-regulated kinase 5 (ERK5). Acute exercise elicits signal transduction via MAPK cascades in direct response to muscle contraction. Thus, MAPK pathways appear to be potential physiological mechanisms involved in the exercise-induced regulation of gene expression in skeletal muscle.


Asunto(s)
Ejercicio Físico/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Músculo Esquelético/fisiología , Esfuerzo Físico/fisiología , Transducción de Señal/fisiología , Animales , Humanos , Contracción Muscular/fisiología
5.
Acta Physiol Scand ; 171(3): 249-57, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11412137

RESUMEN

This review will provide insight on potential intracellular signalling mechanisms by which insulin and exercise/contraction increases glucose metabolism and gene expression. Glucose transport, the rate limiting step in glucose metabolism, is mediated by glucose transporter 4 (GLUT4) and can be activated in skeletal muscle by two separate and distinct signalling pathways; one stimulated by insulin and the second by muscle contractions. Impaired insulin action on whole body glucose uptake is a hallmark feature of type II (non-insulin-dependent) diabetes mellitus. Defects in insulin signal transduction through the insulin-receptor substrate-1/phosphatidylinositol 3-kinase pathway are associated with reduced insulin-stimulated glucose transporter 4 translocation and glucose transport activity in skeletal muscle from type II diabetic patients. Studies performed using glucose transporter 4-null mice show that this glucose transporter isoform plays a major role in mediating exercise-stimulated glucose uptake in skeletal muscle. Level of physical exercise has been linked to improved glucose homeostasis and enhanced insulin sensitivity. Exercise training leads to alterations in expression and activity of key proteins involved in insulin signal transduction. These changes may be related to increased signal transduction through the mitogen-activated protein kinase (MAPK) signalling cascades. Because MAPK is associated with increased transcriptional activity, these signalling cascades are candidates for these exercise-induced changes in protein expression. Understanding the molecular mechanism for the activation of signal transduction pathways will provide a link for defining new strategies to enhance glucose metabolism and improve health in the general population.


Asunto(s)
Ejercicio Físico/fisiología , Glucosa/metabolismo , Insulina/farmacología , Proteínas Musculares , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Animales , Transporte Biológico , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucosa de Tipo 4 , Humanos , Ratones , Ratones Noqueados , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas de Transporte de Monosacáridos/deficiencia , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Contracción Muscular/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
6.
Diabetes ; 50(5): 1149-57, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11334420

RESUMEN

Conjugated linoleic acid (CLA) isomers have a number of beneficial health effects, as shown in biomedical studies with animal models. Previously, we reported that a mixture of CLA isomers improved glucose tolerance in ZDF rats and activated peroxisome proliferator-activated receptor (PPAR)-gamma response elements in vitro. Here, our aim was to elucidate the effect(s) of specific CLA isomers on whole-body glucose tolerance, insulin action in skeletal muscle, and expression of genes important in glucose and lipid metabolism. ZDF rats were fed either a control diet (CON), one of two CLA supplemented diets (1.5% CLA) containing differing isoforms of CLA (47% c9,t11; 47.9% c10,t12, 50:50; or 91% c9,t11, c9,t11 isomers), or were pair-fed CON diet to match the intake of 50:50. The 50:50 diet reduced adiposity and improved glucose tolerance compared with all other ZDF treatments. Insulin-stimulated glucose transport and glycogen synthase activity in skeletal muscle were improved with 50:50 compared with all other treatments. Neither phosphatidlyinositol 3-kinase activity nor Akt activity in muscle was affected by treatment. Uncoupling protein 2 in muscle and adipose tissue was upregulated by c9,t11 and 50:50 compared with ZDF controls. PPAR-gamma mRNA was downregulated in liver of c9,t11 and pair-fed ZDF rats. Thus, the improved glucose tolerance in 50:50 rats is attributable to, at least in part, improved insulin action in muscle, and CLA effects cannot be explained simply by reduced food intake.


Asunto(s)
Glucemia/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Insulina/fisiología , Ácidos Linoleicos/farmacología , Proteínas de Transporte de Membrana , Proteínas Mitocondriales , Músculo Esquelético/fisiología , Proteínas Serina-Treonina Quinasas , Proteínas/genética , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Suplementos Dietéticos , Ingestión de Energía/efectos de los fármacos , Ácidos Grasos no Esterificados/sangre , Conducta Alimentaria/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Canales Iónicos , Isomerismo , Leptina/sangre , Ácidos Linoleicos/administración & dosificación , Masculino , Músculo Esquelético/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , ARN Mensajero/genética , Ratas , Ratas Zucker , Receptores Citoplasmáticos y Nucleares/genética , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Triglicéridos/sangre , Desacopladores/metabolismo , Proteína Desacopladora 2
7.
Endocrinology ; 142(5): 1999-2004, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11316766

RESUMEN

Previously we have demonstrated that striated muscle GLUT4 gene expression decreased following streptozotocin-induced diabetes due to a loss of MEF2A transcription factor expression without any significant effect on the MEF2D isoform (Mora, S. and J. E. Pessin (2000) J Biol Chem, 275:16323-16328). In contrast to both cardiac and skeletal muscle, adipose tissue displays a selective decrease in MEF2D expression in diabetes without any significant alteration in MEF2A protein content. Adipose tissue also expresses very low levels of the MEF2 transcription factors and nuclear extracts from white adipose tissue exhibit poor in vitro binding to the MEF2 element. However, addition of in vitro synthesized MEF2A to adipose nuclear extracts results in the formation of the expected MEF2/DNA complex. More importantly, binding to the MEF2 element was also compromised in the diabetic condition. Furthermore, in vivo overexpression of MEF2A selectively in adipose tissue did not affect GLUT4 or MEF2D expression and was not sufficient to prevent GLUT4 down-regulation that occurred in insulin-deficient states.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas de Unión al ADN/análisis , Diabetes Mellitus Experimental/metabolismo , Proteínas Musculares , Músculos/metabolismo , Factores de Transcripción/análisis , Animales , Proteínas de Unión al ADN/química , Dimerización , Transportador de Glucosa de Tipo 4 , Humanos , Proteínas de Dominio MADS , Factores de Transcripción MEF2 , Ratones , Proteínas de Transporte de Monosacáridos/análisis , Factores Reguladores Miogénicos , Isoformas de Proteínas/análisis , Ratas , Estreptozocina , Factores de Transcripción/química
8.
Mol Cell Biol ; 21(5): 1573-80, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11238894

RESUMEN

To investigate the physiological function of the VAMP3 vesicle SNARE (v-SNARE) isoform in the regulation of GLUT4 vesicle trafficking, we generated homozygotic VAMP3 null mice by targeted gene disruption. The VAMP3 null mice had typical growth rate and weight gain, with normal maintenance of fasting serum glucose and insulin levels. Analysis of glucose disposal and insulin sensitivity demonstrated normal insulin and glucose tolerance, with no evidence for insulin resistance. Insulin stimulation of glucose uptake in isolated primary adipocytes was essentially the same for the wild-type and VAMP3 null mice. Similarly, insulin-, hypoxia-, and exercise-stimulated glucose uptake in isolated skeletal muscle did not differ significantly. In addition, other general membrane trafficking events including phagocytosis, pinocytosis, and transferrin receptor recycling were also found to be unaffected in the VAMP3 null mice. Taken together, these data demonstrate that VAMP3 function is not necessary for either regulated GLUT4 translocation or general constitutive membrane recycling.


Asunto(s)
Insulina/metabolismo , Proteínas de la Membrana/genética , Proteínas Musculares , Condicionamiento Físico Animal , Proteínas de Transporte Vesicular , Adipocitos/metabolismo , Animales , Glucemia/metabolismo , Western Blotting , Peso Corporal/genética , Bovinos , Células Cultivadas , ADN Complementario/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/metabolismo , Eliminación de Gen , Glucosa/farmacocinética , Transportador de Glucosa de Tipo 4 , Homocigoto , Hipoxia , Insulina/sangre , Masculino , Proteínas de la Membrana/química , Ratones , Modelos Genéticos , Proteínas de Transporte de Monosacáridos/metabolismo , Músculo Esquelético/metabolismo , Mutagénesis Sitio-Dirigida , Fagocitosis , Pinocitosis , Isoformas de Proteínas , Receptores de Transferrina/metabolismo , Proteínas SNARE , Factores Sexuales , Factores de Tiempo , Distribución Tisular , Transferrina/metabolismo , Proteína 3 de Membrana Asociada a Vesículas
9.
Front Biosci ; 6: D154-63, 2001 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11171554

RESUMEN

Resistance to the normal action of insulin contributes to the pathogenesis of a number of common human disorders, Type II (non-insulin-dependent) diabetes mellitus. This review is focused on current understanding of the molecular mechanisms regulating insulin action and the factors contributing to insulin resistance in skeletal muscle. Since skeletal muscle is considered the major organ responsible for glucose uptake under insulin-stimulated conditions, defects in this target tissue are likely to contribute to metabolic disregulation in Type II diabetes mellitus. Defects in insulin signal transduction through the insulin-receptor substrate-1/phosphatidylinositol 3-kinase pathway is associated with reduced insulin-stimulated glucose transport activity in skeletal muscle from Type II diabetic patients. Glucose transport, the rate limiting step in glucose metabolism, is mediated by glucose transporter 4 (GLUT4) translocation and can be activated in skeletal muscle by two separate and distinct signaling pathways; one stimulated by insulin and the second by muscle contractions. Level of physical exercise has been linked to improved glucose homeostasis and enhanced insulin sensitivity. Understanding the molecular mechanism for the activation of signal transduction pathways by which insulin and muscle contraction increase glucose transport will provide a link to defining new strategies to enhance glucose metabolism in the diabetic patient.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Glucosa/farmacocinética , Resistencia a la Insulina/fisiología , Proteínas Musculares , Músculo Esquelético/metabolismo , Animales , Ejercicio Físico/fisiología , Transportador de Glucosa de Tipo 4 , Homeostasis , Humanos , Ratones , Ratones Noqueados , Proteínas de Transporte de Monosacáridos/metabolismo , Ratas , Transducción de Señal
10.
Diabetes ; 49(4): 647-54, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10871204

RESUMEN

Cell surface GLUT4 levels in skeletal muscle from nine type 2 diabetic subjects and nine healthy control subjects have been assessed by a new technique that involves the use of a biotinylated photo-affinity label. A profound impairment in GLUT4 translocation to the skeletal muscle cell surface in response to insulin was observed in type 2 diabetic patients. Levels of insulin-stimulated cell surface GLUT4 above basal in type 2 diabetic patients were only approximately 10% of those observed in healthy subjects. The magnitude of the defect in GLUT4 translocation in type 2 diabetic patients was greater than that observed for glucose transport activity, which was approximately 50% of that in healthy subjects. Reduced GLUT4 translocation is therefore a major contributor to the impaired glucose transport activity in skeletal muscle from type 2 diabetic subjects. When a marked impairment in GLUT4 translocation occurs, the contribution of other transporters to transport activity becomes apparent. In response to hypoxia, marked reductions in skeletal muscle cell surface GLUT4 levels were also observed in type 2 diabetic patients. Therefore, a defect in a common late stage in signal transduction and/or a direct impairment in the GLUT4 translocation process accounts for reduced glucose transport in type 2 diabetic patients.


Asunto(s)
Hipoxia de la Célula , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares , Músculo Esquelético/metabolismo , Etiquetas de Fotoafinidad , Transporte Biológico , Biotinilación , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 4 , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/ultraestructura
11.
Proc Natl Acad Sci U S A ; 97(1): 38-43, 2000 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-10618367

RESUMEN

Level of physical activity is linked to improved glucose homeostasis. We determined whether exercise alters the expression and/or activity of proteins involved in insulin-signal transduction in skeletal muscle. Wistar rats swam 6 h per day for 1 or 5 days. Epitrochlearis muscles were excised 16 h after the last exercise bout, and were incubated with or without insulin (120 nM). Insulin-stimulated glucose transport increased 30% and 50% after 1 and 5 days of exercise, respectively. Glycogen content increased 2- and 4-fold after 1 and 5 days of exercise, with no change in glycogen synthase expression. Protein expression of the glucose transporter GLUT4 and the insulin receptor increased 2-fold after 1 day, with no further change after 5 days of exercise. Insulin-stimulated receptor tyrosine phosphorylation increased 2-fold after 5 days of exercise. Insulin-stimulated tyrosine phosphorylation of insulin-receptor substrate (IRS) 1 and associated phosphatidylinositol (PI) 3-kinase activity increased 2.5- and 3. 5-fold after 1 and 5 days of exercise, despite reduced (50%) IRS-1 protein content after 5 days of exercise. After 1 day of exercise, IRS-2 protein expression increased 2.6-fold and basal and insulin-stimulated IRS-2 associated PI 3-kinase activity increased 2. 8-fold and 9-fold, respectively. In contrast to IRS-1, IRS-2 expression and associated PI 3-kinase activity normalized to sedentary levels after 5 days of exercise. Insulin-stimulated Akt phosphorylation increased 5-fold after 5 days of exercise. In conclusion, increased insulin-stimulated glucose transport after exercise is not limited to increased GLUT4 expression. Exercise leads to increased expression and function of several proteins involved in insulin-signal transduction. Furthermore, the differential response of IRS-1 and IRS-2 to exercise suggests that these molecules have specialized, rather than redundant, roles in insulin signaling in skeletal muscle.


Asunto(s)
Insulina/farmacología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Condicionamiento Físico Animal , Transducción de Señal , Animales , Femenino , Expresión Génica , Glucosa/análogos & derivados , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4 , Glucógeno Sintasa/metabolismo , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Wistar , Receptor de Insulina/metabolismo
12.
J Biol Chem ; 275(2): 1457-62, 2000 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-10625698

RESUMEN

Growing evidence suggests that activation of mitogen-activated protein kinase (MAPK) signal transduction mediates changes in muscle gene expression in response to exercise. Nevertheless, little is known about upstream or downstream regulation of MAPK in response to muscle contraction. Here we show that ex vivo muscle contraction stimulates extracellular signal-regulated kinase 1 and 2 (ERK1/2), and p38(MAPK) phosphorylation. Phosphorylation of ERK1/2 or p38(MAPK) was unaffected by protein kinase C inhibition (GF109203X), suggesting that protein kinase C is not involved in mediating contraction-induced MAPK signaling. Contraction-stimulated phosphorylation of ERK1/2 and p38(MAPK) was completely inhibited by pretreatment with PD98059 (MAPK kinase inhibitor) and SB203580 (p38(MAPK) inhibitor), respectively. Muscle contraction also activated MAPK downstream targets p90 ribosomal S6 kinase (p90(Rsk)), MAPK-activated protein kinase 2 (MAPKAP-K2), and mitogen- and stress-activated protein kinase 1 (MSK1). Use of PD98059 or SB203580 revealed that stimulation of p90(Rsk) and MAPKAP-K2 most closely reflects ERK and p38(MAPK) stimulation, respectively. Stimulation of MSK1 in contracting skeletal muscle required the activation of both ERK and p38(MAPK). These data demonstrate that muscle contraction, separate from systemic influence, activates MAPK signaling. Furthermore, we are the first to show that contractile activity stimulates MAPKAP-K2 and MSK1.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Transducción de Señal/fisiología , 3-O-Metilglucosa/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Glucógeno/metabolismo , Imidazoles/farmacología , Técnicas In Vitro , Indoles/farmacología , Insulina/farmacología , Masculino , Maleimidas/farmacología , Proteína Quinasa 3 Activada por Mitógenos , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Fosfopéptidos/química , Fosforilación , Piridinas/farmacología , Ratas , Ratas Wistar , Acetato de Tetradecanoilforbol/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos
13.
J Mammary Gland Biol Neoplasia ; 5(2): 227-41, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11149575

RESUMEN

The mouse mammary gland is a complex tissue, which is continually undergoing changes in structure and function. Embryonically, the gland begins with invasion of the underlying fat pad by a rudimentary ductal structure. Postnatal growth occurs in two phases: ductal growth and early alveolar development during estrous cycles, and cycles of proliferation, differentiation, and death that occur with each pregnancy, lactation, and involution. The variety of epithelial structures and stromal changes throughout the life of a mammary gland makes it a challenge to study. The purpose of this histological review is to give a brief representation of the morphological changes that occur throughout the cycle of mouse mammary gland development so that developmental changes observed in mouse models of mammary development can be appreciated.


Asunto(s)
Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Envejecimiento , Animales , Diferenciación Celular , División Celular , Estro , Femenino , Lactancia , Glándulas Mamarias Animales/embriología , Ratones , Embarazo , Maduración Sexual
14.
Am J Physiol ; 277(6): R1690-6, 1999 12.
Artículo en Inglés | MEDLINE | ID: mdl-10600915

RESUMEN

We determined the muscle fiber type-specific response of intracellular signaling proteins to insulin. Epitrochlearis (Epi; 15% type I, 20% type IIa, and 65% type IIb), soleus (84, 16, and 0%), and extensor digitorum longus (EDL; 3, 57, and 40%) muscles from Wistar rats were incubated without or with 120 nM insulin (3-40 min). Peak insulin receptor (IR) tyrosine phosphorylation was reached after 6 (soleus) and 20 (Epi and EDL) min, with sustained activity throughout insulin exposure (40 min). Insulin increased insulin receptor substrate (IRS)-1 and IRS-2 tyrosine phosphorylation and phosphotyrosine-associated phosphatidylinositol (PI)-3-kinase activity to a maximal level after 3-10 min, with subsequent downregulation. Akt kinase phosphorylation peaked at 20 min, with sustained activity throughout insulin exposure. Importantly, the greatest insulin response for all signaling intermediates was observed in soleus, whereas the insulin response between EDL and Epi was similar. Protein expression of the p85alpha-subunit of PI 3-kinase and Akt kinase, but not IR, IRS-1, or IRS-2, was greater in oxidative versus glycolytic muscle. In conclusion, increased function and/or expression of key proteins in the insulin-signaling cascade contribute to fiber type-specific differences in insulin action in skeletal muscle.


Asunto(s)
Insulina/farmacología , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/fisiología , Músculo Esquelético/fisiología , Transducción de Señal/fisiología , Animales , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular , Masculino , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Especificidad de Órganos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Ratas , Ratas Wistar , Receptor de Insulina/fisiología , Transducción de Señal/efectos de los fármacos
15.
FASEB J ; 13(15): 2246-56, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10593872

RESUMEN

To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice.


Asunto(s)
Glucosa/metabolismo , Glucógeno/biosíntesis , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares , Músculo Esquelético/metabolismo , Esfuerzo Físico , Animales , Transporte Biológico , Glucemia/metabolismo , Carbohidratos de la Dieta , Ayuno , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 4 , Glucógeno/metabolismo , Glucógeno Sintasa/metabolismo , Hígado/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Monosacáridos/deficiencia , Proteínas de Transporte de Monosacáridos/genética , Contracción Muscular/fisiología
16.
Biochem J ; 342 ( Pt 2): 321-8, 1999 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10455018

RESUMEN

We have characterized the glucose-transport system in soleus muscle from female GLUT4-null mice to determine whether GLUT1, 3 or 5 account for insulin-stimulated glucose-transport activity. Insulin increased 2-deoxyglucose uptake 2.8- and 2.1-fold in soleus muscle from wild-type and GLUT4-null mice, respectively. Cytochalasin B, an inhibitor of GLUT1- and GLUT4-mediated glucose transport, inhibited insulin-stimulated 2-deoxyglucose uptake by >95% in wild-type and GLUT4-null soleus muscle. Addition of 35 mM fructose to the incubation media was without effect on insulin-stimulated 3-O-methylglucose transport activity in soleus muscle from either genotype, whereas 35 mM glucose inhibited insulin-stimulated (20 nM) 3-O-methylglucose transport by 65% in wild-type and 99% in GLUT4-null mice. We utilized the 2-N-4-1-(1-azi-2,2,2-triflu oroethyl)benzoyl-1, 3-bis(D-mannose-4-yloxy)-2-propylamine (ATB-BMPA) exofacial photolabel to determine if increased cell-surface GLUT1 or GLUT4 content accounted for insulin-stimulated glucose transport in GLUT4-null muscle. In wild-type soleus muscle, cell-surface GLUT4 content was increased by 2.8-fold under insulin-stimulated conditions and this increase corresponded to the increase in 2-deoxyglucose uptake. No detectable cell-surface GLUT4 was observed in soleus muscle from female GLUT4-null mice under either basal or insulin-stimulated conditions. Basal cell-surface GLUT1 content was similar between wild-type and GLUT4-null mice, with no further increase noted in either genotype with insulin exposure. Neither GLUT3 nor GLUT5 appeared to account for insulin-stimulated glucose-transport activity in wild-type or GLUT4-null muscle. In conclusion, insulin-stimulated glucose-transport activity in female GLUT4-null soleus muscle is mediated by a facilitative transport process that is glucose- and cytochalasin B-inhibitable, but which is not labelled strongly by ATB-BMPA.


Asunto(s)
Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares , Proteínas del Tejido Nervioso , Propilaminas , 3-O-Metilglucosa/metabolismo , Marcadores de Afinidad , Animales , Azidas , Transporte Biológico Activo/efectos de los fármacos , Membrana Celular/metabolismo , Citocalasina B/farmacología , Desoxiglucosa/metabolismo , Disacáridos , Femenino , Expresión Génica , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 3 , Transportador de Glucosa de Tipo 4 , Transportador de Glucosa de Tipo 5 , Glicósidos , Técnicas In Vitro , Insulina/farmacología , Cinética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo
17.
Diabetologia ; 42(9): 1071-9, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10447518

RESUMEN

AIMS/HYPOTHESIS: We have previously reported that hyperglycaemia activates glucose transport in skeletal muscle by a Ca(2+)-dependent pathway, which is distinct from the insulin-signalling pathway. The aim of this study was to explain the signalling mechanism by which hyperglycaemia autoregulates glucose transport in skeletal muscle. METHODS: Isolated rat soleus muscle was incubated in the presence of various concentrations of glucose or 3-O-methylglucose and protein kinase C and phospholipase C inhibitors. Glucose transport activity, cell surface glucose transporter 1 and glucose transporter 4 content and protein kinase C translocation was determined. RESULTS: High concentrations of 3-O-methylglucose led to a concentration-dependent increase in [(3)H]-3-O-methylglucose transport in soleus muscle. Dantrolene, an inhibitor of Ca(2+) released from the sarcoplasmic reticulum, decreased the V(max) and the K(m) of the concentration-response curve. Protein kinase C inhibitors (H-7 and GF109203X) inhibited the stimulatory effect of high glucose concentrations on hexose transport, whereas glucose transport stimulated by insulin was unchanged. Incubation of muscle with glucose (25 mmol/l) and 3-O-methylglucose (25 mmol/l) led to a three fold gain in protein kinase Cbeta(2) in the total membrane fraction, whereas membrane content of protein kinase Calpha, beta(1), delta, epsilon and theta were unchanged. A short-term increase in the extracellular glucose concentration did not change cell surface recruitment of glucose transporter 1 or glucose transporter 4, as assessed by exofacial photolabelling with [(3)H]-ATB-BMPA bis-mannose. CONCLUSION/INTERPRETATION: Protein kinase Cbeta(2) is involved in a glucose-sensitive, Ca(2+)-dependent signalling pathway, which is possibly involved in the regulation of glucose transport in skeletal muscle. This glucose-dependent increase in 3-0-methylglucose transport is independent of glucose transporter 4 and glucose transporter 1 translocation to the plasma membrane and may involve modifications of cell surface glucose transporter activity.


Asunto(s)
3-O-Metilglucosa/metabolismo , Glucosa/metabolismo , Hiperglucemia/metabolismo , Isoenzimas/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares , Músculo Esquelético/metabolismo , Proteína Quinasa C/metabolismo , Animales , Membrana Celular/metabolismo , Glucosa/farmacología , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 4 , Técnicas In Vitro , Insulina/farmacología , Cinética , Masculino , Músculo Esquelético/efectos de los fármacos , Proteína Quinasa C beta , Ratas , Ratas Wistar
18.
Diabetes ; 48(3): 664-70, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10078575

RESUMEN

To determine whether defects in the insulin signal transduction pathway to glucose transport occur in a muscle fiber type-specific manner, post-receptor insulin-signaling events were assessed in oxidative (soleus) and glycolytic (extensor digitorum longus [EDL]) skeletal muscle from Wistar or diabetic GK rats. In soleus muscle from GK rats, maximal insulin-stimulated (120 nmol/l) glucose transport was significantly decreased, compared with that of Wistar rats. In EDL muscle from GK rats, maximal insulin-stimulated glucose transport was normal, while the submaximal response was reduced compared with that of Wistar rats. We next treated diabetic GK rats with phlorizin for 4 weeks to determine whether restoration of glycemia would lead to improved insulin signal transduction. Phlorizin treatment of GK rats resulted in full restoration of insulin-stimulated glucose transport in soleus and EDL muscle. In soleus muscle from GK rats, submaximal and maximal insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation and IRS-1-associated phosphatidylinositol (PI) 3-kinase activity were markedly reduced, compared with that of Wistar rats, but only submaximal insulin-stimulated PI 3-kinase was restored after phlorizin treatment. In EDL muscle, insulin-stimulated IRS-1 tyrosine phosphorylation and IRS-1-associated PI-3 kinase were not altered between GK and Wistar rats. Maximal insulin-stimulated Akt (protein kinase B) kinase activity is decreased in soleus muscle from GK rats and restored upon normalization of glycemia (Krook et al., Diabetes 46:2100-2114, 1997). Here, we show that in EDL muscle from GK rats, maximal insulin-stimulated Akt kinase activity is also impaired and restored to Wistar rat levels after phlorizin treatment. In conclusion, functional defects in IRS-1 and PI 3-kinase in skeletal muscle from diabetic GK rats are fiber-type-specific, with alterations observed in oxidative, but not glycolytic, muscle. Furthermore, regardless of muscle fiber type, downstream steps to PI 3-kinase (i.e., Akt and glucose transport) are sensitive to changes in the level of glycemia.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Regulación de la Expresión Génica , Glucosa/metabolismo , Insulina/fisiología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal/fisiología , 3-O-Metilglucosa/farmacocinética , Animales , Transporte Biológico/efectos de los fármacos , Peso Corporal , Diabetes Mellitus Tipo 2/genética , Regulación de la Expresión Génica/efectos de los fármacos , Transportador de Glucosa de Tipo 4 , Glucógeno Sintasa/genética , Proteínas Sustrato del Receptor de Insulina , Proteínas de Transporte de Monosacáridos/genética , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Florizina/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Ratas , Ratas Endogámicas , Ratas Wistar , Especificidad de la Especie
19.
Pflugers Arch ; 439(1-2): 130-3, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10651009

RESUMEN

Cigarette smoke contains many potentially harmful substances, including nicotine and nicotine metabolites, which are likely to contribute to altered glucose homeostasis. We determined the effects of nicotine and nicotine derivatives on glucose transport in skeletal muscle. Split rat soleus muscles were pre-incubated in the presence of nicotine (range 0.01-100 microg/ml) or nicotine metabolites including nicotine 1'-N-oxide, cotinine, trans-3'-hydroxycotinine, 5'-hydroxycotinine, gamma-3-pyridyly-oxo-butyric acid and nicotine iminium ion before measurement of 3-O-methylglucose transport rate and glycogen synthase activity. Nicotine (100 microg/ml) did not alter basal 3-O-methylglucose transport. Insulin-stimulated (0.6 nmol/l) glucose transport was unaltered following acute (50 min) exposure to nicotine (0.01-100 microg/ml). The nicotine metabolite 5'-hydroxycotinine increased basal glucose transport and glycogen synthase activity (up to 50%; P<0.05), with no effect on insulin-stimulated glucose transport and glycogen synthase activity. None of the other nicotine metabolites had any effect on basal or insulin-stimulated glucose transport. Acute exposure of skeletal muscle to the nicotine derivative 5'-hydroxycotinine appears to directly increase basal glucose transport and metabolism. Whether this leads to changes in whole-body glucose homeostasis in cigarette smokers requires further investigation.


Asunto(s)
Cotinina/análogos & derivados , Glucosa/metabolismo , Glucógeno Sintasa/metabolismo , Músculo Esquelético/metabolismo , Nicotina/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Cotinina/farmacología , Hipoglucemiantes/farmacología , Insulina/farmacología , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Ratas , Ratas Wistar
20.
Endocrinology ; 139(12): 5034-41, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9832442

RESUMEN

Thiazolidinedione (TZD) insulin sensitizers are specific agonists of peroxisome proliferator activated receptor (PPAR)gamma. However, their mechanism of action and the in vivo target tissue(s) that mediate insulin sensitization remain poorly defined. Although PPARgamma messenger RNA expression has been reported in skeletal muscle, the expression of PPARgamma within myocytes in intact muscle tissue has not been examined. An antipeptide PPARgamma antibody was generated; immunohistochemistry was then used to demonstrate that PPARgamma is present within nuclei of myocytes [in both skeletal (white and red fibers) and cardiac tissue (rodent and human)]. The effect of insulin sensitizer treatment on muscle insulin action was studied using ob/ob mice after 4 days dosing with a potent (6 nM PPARgamma Kd) TZD (10 mg/kg x day). 2-deoxyglucose (2-DOG) uptake was then assessed in freshly isolated soleus muscles from lean vs. ob/ob vs. TZD-treated ob/ob mice. In lean mouse muscles, 2-DOG uptake was stimulated by 82%, 95%, 165% (with 25, 100, 2000 microU/ml insulin); muscles from ob/ob were severely insulin resistant (<80% stimulation with 2000 microU/ml insulin). Muscles from TZD-treated ob/ob displayed a normal insulin response with 100 (71%) or 2000 (158%) microU/ml insulin. Additional studies were performed using ZDF rats treated with/without TZD for 7 days. In vivo 2-DOG glucose uptake into soleus, gastrocnemius, and diaphragm muscles was measured during euglycemic-hyperinsulinemic clamp. Compared with lean rats, muscle 2-DOG uptake in ZDF was reduced by 52% (soleus) or 71% (diaphragm). Partial (40-60%) normalization of the reduced 2-DOG uptake was evident in TZD-treated ZDF rats. In contrast to the effect of in vivo treatment on muscle insulin action, preincubation of isolated soleus muscles from naive lean or ob/ob mice for 5 h with 100 nM TZD did not affect insulin-stimulated 2-DOG uptake. We conclude: 1) PPARgamma is expressed in myocytes within skeletal and cardiac muscle. 2) In vivo activation of PPARgamma by treatment of insulin-resistant mice/rats with a potent TZD corrects impaired muscle insulin action. 3) The lack of a direct effect on muscle after 5 h in vitro TZD incubation suggests that changes in insulin action may require a longer duration of PPARgamma activation or that improved muscle insulin sensitivity may result from an indirect in vivo effect of PPARgamma activation (e.g. changes in systemic lipid metabolism).


Asunto(s)
Hipoglucemiantes/farmacología , Resistencia a la Insulina/fisiología , Músculo Esquelético/fisiología , Receptores Citoplasmáticos y Nucleares/agonistas , Tiazoles/farmacología , Tiazolidinedionas , Factores de Transcripción/agonistas , Animales , Desoxiglucosa/farmacocinética , Humanos , Técnicas In Vitro , Insulina/farmacología , Masculino , Ratones/genética , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Obesidad/genética , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...