Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gigascience ; 10(1)2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33506265

RESUMEN

BACKGROUND: Life scientists routinely face massive and heterogeneous data analysis tasks and must find and access the most suitable databases or software in a jungle of web-accessible resources. The diversity of information used to describe life-scientific digital resources presents an obstacle to their utilization. Although several standardization efforts are emerging, no information schema has been sufficiently detailed to enable uniform semantic and syntactic description-and cataloguing-of bioinformatics resources. FINDINGS: Here we describe biotoolsSchema, a formalized information model that balances the needs of conciseness for rapid adoption against the provision of rich technical information and scientific context. biotoolsSchema results from a series of community-driven workshops and is deployed in the bio.tools registry, providing the scientific community with >17,000 machine-readable and human-understandable descriptions of software and other digital life-science resources. We compare our approach to related initiatives and provide alignments to foster interoperability and reusability. CONCLUSIONS: biotoolsSchema supports the formalized, rigorous, and consistent specification of the syntax and semantics of bioinformatics resources, and enables cataloguing efforts such as bio.tools that help scientists to find, comprehend, and compare resources. The use of biotoolsSchema in bio.tools promotes the FAIRness of research software, a key element of open and reproducible developments for data-intensive sciences.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Biología Computacional , Bases de Datos Factuales , Humanos , Semántica , Programas Informáticos
2.
Genome Biol ; 20(1): 164, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31405382

RESUMEN

Bioinformaticians and biologists rely increasingly upon workflows for the flexible utilization of the many life science tools that are needed to optimally convert data into knowledge. We outline a pan-European enterprise to provide a catalogue ( https://bio.tools ) of tools and databases that can be used in these workflows. bio.tools not only lists where to find resources, but also provides a wide variety of practical information.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Bases de Datos Factuales , Programas Informáticos , Internet
3.
Nucleic Acids Res ; 44(D1): D38-47, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26538599

RESUMEN

Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.


Asunto(s)
Biología Computacional , Sistema de Registros , Curaduría de Datos , Programas Informáticos
4.
Nat Commun ; 6: 5969, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25597990

RESUMEN

Building a population-specific catalogue of single nucleotide variants (SNVs), indels and structural variants (SVs) with frequencies, termed a national pan-genome, is critical for further advancing clinical and public health genetics in large cohorts. Here we report a Danish pan-genome obtained from sequencing 10 trios to high depth (50 × ). We report 536k novel SNVs and 283k novel short indels from mapping approaches and develop a population-wide de novo assembly approach to identify 132k novel indels larger than 10 nucleotides with low false discovery rates. We identify a higher proportion of indels and SVs than previous efforts showing the merits of high coverage and de novo assembly approaches. In addition, we use trio information to identify de novo mutations and use a probabilistic method to provide direct estimates of 1.27e-8 and 1.5e-9 per nucleotide per generation for SNVs and indels, respectively.


Asunto(s)
Genoma Humano/genética , Algoritmos , Humanos , Tasa de Mutación , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...