Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 108(5): 052504, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22400930

RESUMEN

The first direct mass measurement of {6}He has been performed with the TITAN Penning trap mass spectrometer at the ISAC facility. In addition, the mass of {8}He was determined with improved precision over our previous measurement. The obtained masses are m({6}He)=6.018 885 883(57) u and m({8}He)=8.033 934 44(11) u. The {6}He value shows a deviation from the literature of 4σ. With these new mass values and the previously measured atomic isotope shifts we obtain charge radii of 2.060(8) and 1.959(16) fm for {6}He and {8}He, respectively. We present a detailed comparison to nuclear theory for {6}He, including new hyperspherical harmonics results. A correlation plot of the point-proton radius with the two-neutron separation energy demonstrates clearly the importance of three-nucleon forces.

2.
Phys Rev Lett ; 101(20): 202501, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-19113333

RESUMEN

In this Letter, we report a new mass for 11Li using the trapping experiment TITAN at TRIUMF's ISAC facility. This is by far the shortest-lived nuclide, t_{1/2}=8.8 ms, for which a mass measurement has ever been performed with a Penning trap. Combined with our mass measurements of ;{8,9}Li we derive a new two-neutron separation energy of 369.15(65) keV: a factor of 7 more precise than the best previous value. This new value is a critical ingredient for the determination of the halo charge radius from isotope-shift measurements. We also report results from state-of-the-art atomic-physics calculations using the new mass and extract a new charge radius for 11Li. This result is a remarkable confluence of nuclear and atomic physics.

3.
Phys Rev Lett ; 101(1): 012501, 2008 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-18764106

RESUMEN

A high-precision Penning trap mass measurement of the exotic 8He nuclide (T(1/2)=119 ms) has been carried out resulting in a reduction of the uncertainty of the halo binding energy by over an order of magnitude. The new mass, determined with a relative uncertainty of 9.2 x 10(-8) (deltam=690 eV) is 13 keV less bound than the previously accepted value. The mass measurement is of great relevance for the recent charge-radius measurement of 8He [P. Mueller, Phys. Rev. Lett. 99, 252501 (2007).10.1103/PhysRevLett.99.252501]. The 8He mass is the first result from the newly-commissioned Penning trap: TITAN (TRIUMF's Ion Trap for Atomic and Nuclear science) at the ISAC (Isotope Separator and Accelerator) radioactive beam facility at TRIUMF.

4.
Phys Rev Lett ; 96(3): 033002, 2006 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-16486695

RESUMEN

The nuclear charge radius of 11Li has been determined for the first time by high-precision laser spectroscopy. On-line measurements at TRIUMF-ISAC yielded a 7Li-11Li isotope shift (IS) of 25 101.23(13) MHz for the Doppler-free [FORMULA: SEE TEXT]transition. IS accuracy for all other bound Li isotopes was also improved. Differences from calculated mass-based IS yield values for change in charge radius along the isotope chain. The charge radius decreases monotonically from 6Li to 9Li, and then increases from 2.217(35) to 2.467(37) fm for 11Li. This is compared to various models, and it is found that a combination of halo neutron correlation and intrinsic core excitation best reproduces the experimental results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...