Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RNA ; 5(8): 1042-54, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10445879

RESUMEN

Mutants in the Drosophila crooked neck (crn) gene show an embryonic lethal phenotype with severe developmental defects. The unusual crn protein consists of sixteen tandem repeats of the 34 amino acid tetratricopeptide (TPR) protein recognition domain. Crn-like TPR elements are found in several RNA processing proteins, although it is unknown how the TPR repeats or the crn protein contribute to Drosophila development. We have isolated a Saccharomyces cerevisiae gene, CLF1, that encodes a crooked neck-like factor. CLF1 is an essential gene but the lethal phenotype of a clf1::HIS3 chromosomal null mutant can be rescued by plasmid-based expression of CLF1 or the Drosophila crn open reading frame. Clf1p is required in vivo and in vitro for pre-mRNA 5' splice site cleavage. Extracts depleted of Clf1p arrest spliceosome assembly after U2 snRNP addition but prior to productive U4/U6.U5 association. Yeast two-hybrid analyses and in vitro binding studies show that Clf1p interacts specifically and differentially with the U1 snRNP-Prp40p protein and the yeast U2AF65 homolog, Mud2p. Intriguingly, Prp40p and Mud2p also bind the phylogenetically conserved branchpoint binding protein (BBP/SF1). Our results indicate that Clf1p acts as a scaffolding protein in spliceosome assembly and suggest that Clf1p may support the cross-intron bridge during the prespliceosome-to-spliceosome transition.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Drosophila , Drosophila/genética , Proteínas Fúngicas/genética , Proteínas de Insectos/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/farmacología , Ribonucleoproteína Nuclear Pequeña U5/farmacología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Empalmosomas/metabolismo , Secuencia de Aminoácidos , Animales , Cromatografía de Afinidad , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Modelos Genéticos , Datos de Secuencia Molecular , Fenotipo , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteínas/metabolismo , Homología de Secuencia de Aminoácido , Factor de Empalme U2AF , Factores de Tiempo
2.
Mol Cell Biol ; 19(1): 577-84, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9858581

RESUMEN

U4 snRNA release from the spliceosome occurs through an essential but ill-defined Prp38p-dependent step. Here we report the results of a dosage suppressor screen to identify genes that contribute to PRP38 function. Elevated expression of a previously uncharacterized gene, SPP381, efficiently suppresses the growth and splicing defects of a temperature-sensitive (Ts) mutant prp38-1. This suppression is specific in that enhanced SPP381 expression does not alter the abundance of intronless RNA transcripts or suppress the Ts phenotypes of other prp mutants. Since SPP381 does not suppress a prp38::LEU2 null allele, it is clear that Spp381p assists Prp38p in splicing but does not substitute for it. Yeast SPP381 disruptants are severely growth impaired and accumulate unspliced pre-mRNA. Immune precipitation studies show that, like Prp38p, Spp381p is present in the U4/U6.U5 tri-snRNP particle. Two-hybrid analyses support the view that the carboxyl half of Spp381p directly interacts with the Prp38p protein. A putative PEST proteolysis domain within Spp381p is dispensable for the Spp381p-Prp38p interaction and for prp38-1 suppression but contributes to Spp381p function in splicing. Curiously, in vitro, Spp381p may not be needed for the chemistry of pre-mRNA splicing. Based on the in vivo and in vitro results presented here, we propose that two small acidic proteins without obvious RNA binding domains, Spp381p and Prp38p, act in concert to promote U4/U5.U6 tri-snRNP function in the spliceosome cycle.


Asunto(s)
Proteínas Fúngicas/metabolismo , Mutación , Empalme del ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae , Empalmosomas , Secuencia de Aminoácidos , Proteínas Fúngicas/genética , Regulación de la Expresión Génica , Genes Fúngicos , Datos de Secuencia Molecular , Proteínas Nucleares , Precursores del ARN , Factores de Empalme de ARN , Proteínas Represoras/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
3.
Nucleic Acids Res ; 27(2): 587-95, 1999 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-9862984

RESUMEN

Core snRNP proteins bind snRNA through the conserved Sm site, PuA(U)n>/=3GPu. While yeast U1 snRNA has three matches to the Sm consensus, the U1 3'-terminal Sm site was found to be both necessary and sufficient for U1 function. Mutation of this site inhibited pre-mRNA splicing, blocked cell division and resulted in the accumulation of two 3'-extended forms of the U1 snRNA. Cells which harbor the Sm site mutation lack mature U1 RNA (U1alpha) but have a minor polyadenylated species, U1gamma, and a prominent, non-polyadenylated species, U1beta. Metabolic depletion of the essential Sm core protein, Smd1p, also resulted in the increased accumulation of U1beta and U1gamma. In vitro, synthetic U1 precursors were cleaved by Rnt1p (RNase III) very near the U1beta 3'-end observed in vivo. We propose that U1beta is an Rnt1p-cleaved intermediate and that U1 maturation to the U1alpha form occurs through an Sm-sensitive step. Interestingly, both U1alpha and a second, much longer RNA, U1straightepsilon, were produced in an rnt1 mutant strain. These results suggest that yeast U1 snRNA processing may progress through Rnt1p-dependent and Rnt1p-independent pathways, both of which require a fun-ctional Sm site for final snRNA maturation.


Asunto(s)
Endorribonucleasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas , Autoantígenos , Secuencia de Bases , Sitios de Unión , Secuencia de Consenso , Modelos Genéticos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Precursores del ARN/metabolismo , ARN Nuclear Pequeño/genética , Ribonucleasa III , Levaduras , Proteínas Nucleares snRNP
4.
EMBO J ; 17(10): 2938-46, 1998 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-9582287

RESUMEN

The elaborate and energy-intensive spliceosome assembly pathway belies the seemingly simple chemistry of pre-mRNA splicing. Prp38p was previously identified as a protein required in vivo and in vitro for the first pre-mRNA cleavage reaction catalyzed by the spliceosome. Here we show that Prp38p is a unique component of the U4/U6.U5 tri-small nuclear ribonucleoprotein (snRNP) particle and is necessary for an essential step late in spliceosome maturation. Without Prp38p activity spliceosomes form, but arrest in a catalytically impaired state. Functional spliceosomes shed U4 snRNA before 5' splice-site cleavage. In contrast, Prp38p-defective spliceosomes retain U4 snRNA bound to its U6 snRNA base-pairing partner. Prp38p is the first tri-snRNP-specific protein shown to be dispensable for assembly, but required for conformational changes which lead to catalytic activation of the spliceosome.


Asunto(s)
Proteínas Fúngicas/metabolismo , Empalme del ARN , ARN Nuclear Pequeño , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Proteínas de Saccharomyces cerevisiae , Empalmosomas , Proteínas Fúngicas/genética , Factores de Empalme de ARN , Ribonucleoproteína Nuclear Pequeña U5/genética
5.
Mol Cell Biol ; 18(1): 353-60, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9418882

RESUMEN

The U1 snRNP functions to nucleate spliceosome assembly on newly transcribed pre-mRNA. Saccharomyces cerevisiae is unusual among eukaryotes in the greatly extended length of its U1 snRNA and the apparent increased polypeptide complexity of the corresponding U1 snRNP. In this paper, we report the identification of a novel U1 snRNP protein, Prp42p, with unexpected properties. Prp42p was identified by its surprising structural similarity to the essential U1 snRNP protein, Prp39p. Both Prp39p and Prp42p possess multiple copies of a variant tetratricopeptide repeat, an element implicated in a wide range of protein assembly events. Yeast strains depleted of Prp42p by transcriptional repression of a GAL1::PRP42 fusion gene arrest for splicing prior to pre-mRNA 5' splice site cleavage. Prp42p was not observed in a recent biochemical analysis of purified U1 snRNPs from S. cerevisiae (28). Nevertheless, antibodies directed against an epitope-tagged version of Prp42p specifically precipitate U1 snRNA from yeast extracts. Furthermore, Prp42p is required for U1 snRNP biogenesis, because yeast strains depleted of Prp42p formed incomplete U1 snRNPs that failed to produce stable complexes with pre-mRNA in vitro. The evidence shows that Prp39p and Prp42p are both required to configure the atypical yeast U1 snRNP into a structure compatible with its evolutionarily conserved role in pre-mRNA splicing.


Asunto(s)
Proteínas Fúngicas/genética , Precursores del ARN/genética , Empalme del ARN , ARN de Hongos/genética , Ribonucleoproteína Nuclear Pequeña U1/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Análisis de Secuencia
6.
Mol Cell Biol ; 15(1): 445-55, 1995 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-7799953

RESUMEN

Spliceosome assembly during pre-mRNA splicing requires the correct positioning of the U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) on the precursor mRNA. The structure and integrity of these snRNPs are maintained in part by the association of the snRNAs with core snRNP (Sm) proteins. The Sm proteins also play a pivotal role in metazoan snRNP biogenesis. We have characterized a Saccharomyces cerevisiae gene, SMD3, that encodes the core snRNP protein Smd3. The Smd3 protein is required for pre-mRNA splicing in vivo. Depletion of this protein from yeast cells affects the levels of U snRNAs and their cap modification, indicating that Smd3 is required for snRNP biogenesis. Smd3 is structurally and functionally distinct from the previously described yeast core polypeptide Smd1. Although Smd3 and Smd1 are both associated with the spliceosomal snRNPs, overexpression of one cannot compensate for the loss of the other. Thus, these two proteins have distinct functions. A pool of Smd3 exists in the yeast cytoplasm. This is consistent with the possibility that snRNP assembly in S. cerevisiae, as in metazoans, is initiated in the cytoplasm from a pool of RNA-free core snRNP protein complexes.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Empalme del ARN , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Empalmosomas/química , Secuencia de Aminoácidos , Secuencia de Bases , Citoplasma/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
7.
Mol Cell Biol ; 14(6): 3623-33, 1994 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8196608

RESUMEN

The binding of a U1 small nuclear ribonucleoprotein (snRNP) particle to the 5' splice site region of a pre-mRNA is a primary step of intron recognition. In this report, we identify a novel 75-kDa polypeptide of Saccharomyces cerevisiae, Prp39p, necessary for the stable interaction of mRNA precursors with the snRNP components of the pre-mRNA splicing machinery. In vivo, temperature inactivation or metabolic depletion of Prp39p blocks pre-mRNA splicing and causes growth arrest. Analyses of cell extracts reveal a specific and dramatic increase in the electrophoretic mobility of the U1 snRNP particle upon Prp39p depletion and demonstrate that extracts deficient in Prp39p activity are unable to form either the CC1 or CC2 commitment complex band characteristic of productive U1 snRNP/pre-mRNA association. Immunological studies establish that Prp39p is uniquely associated with the U1 snRNP and is recruited with the U1 snRNP into splicing complexes. On the basis of these and related observations, we propose that Prp39p functions, at least in part, prior to stable branch point recognition by the U1 snRNP particle to facilitate or stabilize the U1 snRNP/5' splice site interaction.


Asunto(s)
Precursores del ARN/metabolismo , Empalme del ARN , ARN de Hongos/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , Genes Fúngicos , Datos de Secuencia Molecular , Mutagénesis Insercional , Reacción en Cadena de la Polimerasa , ARN de Hongos/biosíntesis , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Saccharomyces cerevisiae/genética
8.
Mol Gen Genet ; 243(5): 532-9, 1994 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-7911556

RESUMEN

Relatively few genes in the yeast Saccharomyces cerevisiae are known to contain intervening sequences. As a group, yeast ribosomal protein genes exhibit a higher prevalence of introns when compared to non-ribosomal protein genes. In an effort to quantify this bias we have estimated the prevalence of intron sequences among non-ribosomal protein genes by assessing the number of prp2-sensitive mRNAs in an in vitro translation assay. These results, combined with an updated survey of the GenBank DNA database, support an estimate of 2.5% for intron-containing non-ribosomal protein genes. Furthermore, our observations reveal an intriguing distinction between the distributions of ribosomal protein and non-ribosomal protein intron lengths, suggestive of distinct, gene class-specific evolutionary pressures.


Asunto(s)
Genoma Fúngico , Intrones , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Bases , ARN Helicasas DEAD-box , Cartilla de ADN , Bases de Datos Factuales , Electroforesis en Gel Bidimensional , Proteínas Fúngicas/antagonistas & inhibidores , Datos de Secuencia Molecular , Familia de Multigenes , Poli A/análisis , Prevalencia , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/análisis , Proteínas Ribosómicas/genética , Empalmosomas
9.
Nucleic Acids Res ; 21(15): 3501-5, 1993 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-8346029

RESUMEN

Parallel investigations of yeast and metazoan pre-mRNA splicing have documented enormous complexity in the nucleic acid and protein components of the cellular splicing apparatus, the spliceosome. The degree to which yeast and metazoan spliceosomal proteins differ in composition and structure is currently unknown. In this report we demonstrate that the human small nuclear ribonucleoprotein (snRNP) polypeptide D1 complements the cell lethality, splicing deficiency, and snRNA instability phenotypes associated with a yeast smd1 null allele. Mutational analysis of yeast SMD1, guided by a comparison of the predicted yeast and human proteins, reveals that a large, nonconserved portion of Smd1p is dispensable for biological activity. These observations firmly establish D1 as an essential component of the cellular splicing apparatus and suggest that yeast and metazoa are remarkably similar in the polypeptides guiding early snRNP assembly.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Precursores del ARN/genética , Empalme del ARN/efectos de los fármacos , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/farmacología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alelos , Secuencia de Aminoácidos , Autoantígenos , Secuencia de Bases , Proteínas Fúngicas/química , Humanos , Datos de Secuencia Molecular , Mutagénesis , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Empalmosomas/metabolismo , Proteínas Nucleares snRNP
10.
Proc Natl Acad Sci U S A ; 90(3): 848-52, 1993 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-8430095

RESUMEN

The PRP38 gene of Saccharomyces cerevisiae is necessary for the excision of intron sequences from pre-mRNA and required for the maintenance of maximal levels of U6 small nuclear RNA (snRNA). This report describes the identification of a gene of related function, SMD1, located immediately 3' to PRP38. The PRP38 and SMD1 transcription units are configured in an unusual "tail-to-tail" arrangement with their respective open reading frames terminating on opposite strands of a common 6-bp region. The predicted SMD1 polypeptide, Smd1p, is 40% identical to the D1 protein of human small nuclear ribonucleoprotein particles. Experimentally induced depletion of Smd1p blocks the first step of splicing and results in growth arrest. In addition, the levels of the trimethylguanosine-capped spliceosomal snRNAs, U1, U2, U4, and U5, but not the Prp38p-sensitive U6 snRNA, decrease in response to Smd1p depletion. The cap structures of snRNAs persisting in the absence of SMD1 expression appear to be peculiar, as they are poorly recognized by an anti-trimethylguanosine antibody. These data establish Smd1p as a required component of the cellular splicing apparatus and a factor in snRNA maturation and stability.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos/genética , Precursores del ARN/metabolismo , Empalme del ARN , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Autoantígenos , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pruebas de Precipitina , Caperuzas de ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Homología de Secuencia de Aminoácido , Empalmosomas/química , Proteínas Nucleares snRNP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA