Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Temperature (Austin) ; 10(1): 102-120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187833

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with polymodal sensory function. TRPV1 links to fever, while, according to previous studies on TRPV1 knock-out (KO) mice, the role of the channel in the generation of febrile seizure is debated. In the hippocampal formation, functional TRPV1 channels are expressed by Cajal-Retzius cells, which have a role in guidance of migrating neurons during development. Despite the developmental aspects of febrile seizure as well as of Cajal-Retzius cells, no information is available about the hippocampal development in TRPV1 KO mouse. Therefore, in the present work postnatal development of the hippocampal formation was studied in TRPV1 KO mice. Several morphological characteristics including neuronal positioning and maturation, synaptogenesis and myelination were examined with light microscopy following immunohistochemical detection of protein markers of various neurons, synapses, and myelination. Regarding the cytoarchitectonics, neuronal migration, morphological, and neurochemical maturation, no substantial difference could be detected between TRPV1 KO and wild-type control mice. Our data indicate that synapse formation and myelination occur similarly in TRPV1 KO and in control animals. We have found slightly, but not significantly larger numbers of persisting Cajal-Retzius cells in the KO mice than in controls. Our result strengthens previous suggestion concerning the role of TRPV1 channel in the postnatal apoptotic cell death of Cajal-Retzius cells. However, the fact that the hippocampus of KO mice lacks major developmental abnormalities supports the use of TRPV1 KO in various animal models of diseases and pathological conditions.

2.
Brain Res ; 1779: 147787, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35041843

RESUMEN

Temporal lobe epilepsy (TLE) is one of the most common focal pharmacotherapy-resistant epilepsy in adults. Previous studies have shown significantly higher numbers of neurons in the neocortical white matter in TLE patients than in controls. The aim of this work was to investigate whether white matter neurons are part of the neuronal circuitry. Therefore, we studied the distribution and density of synapses in surgically resected neocortical tissue of pharmacotherapy-resistant TLE patients. Neocortical white matter of temporal lobe from non-epileptic patients were used as controls. Synapses and neurons were visualized with immunohistochemistry using antibodies against synaptophysin and NeuN, respectively. The presence of synaptophysin in presynaptic terminals was verified by electron microscopy. Quantification of immunostaining was performed and the data of the patients' cognitive tests as well as clinical records were compared to the density of neurons and synapses. Synaptophysin density in the white matter of TLE patients was significantly higher than in controls. In TLE, a significant correlation was found between synaptophysin immunodensity and density of white matter neurons. Neuronal as well as synaptophysin density significantly correlated with scores of verbal memory of TLE patients. Neurosurgical outcome of TLE patients did not significantly correlate with histological data, although, higher neuronal and synaptophysin densities were observed in patients with favorable post-surgical outcome. Our results suggest that white matter neurons in TLE patients receive substantial synaptic input and indicate that white matter neurons may be integrated in epileptic neuronal networks responsible for the development or maintenance of seizures.


Asunto(s)
Epilepsia Refractaria/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Neocórtex/fisiopatología , Red Nerviosa/fisiopatología , Neuronas/fisiología , Sinapsis/fisiología , Epilepsia Refractaria/cirugía , Epilepsia del Lóbulo Temporal/cirugía , Humanos , Neocórtex/cirugía , Sinaptofisina/metabolismo , Aprendizaje Verbal/fisiología , Sustancia Blanca
3.
Neuroscience ; 448: 55-70, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32931846

RESUMEN

In the present study, we examined parvalbumin-immunoreactive cells and axons in the dentate gyrus of surgically resected tissues of therapy-resistant temporal lobe epilepsy (TLE) patients with different etiologies. Based on MRI results, five groups of patients were formed: (1) hippocampal sclerosis (HS), (2) malformation of cortical development, (3) malformation of cortical development + HS, (4) tumor-induced TLE, (5) patients with negative MRI result. Four control samples were also included in the study. Parvalbumin-immunoreactive cells were observed mostly in subgranular location in the dentate hilus in controls, in tumor-induced TLE, in malformation of cortical development and in MR-negative cases. In patients with HS, significant decrease in the number of hilar parvalbumin-immunoreactive cells and large numbers of ectopic parvalbumin-containing neurons were detected in the dentate gyrus' molecular layer. The ratio of ectopic/normally-located cells was significantly higher in HS than in other TLE groups. In patients with HS, robust sprouting of parvalbumin-immunoreactive axons were frequently visible in the molecular layer. The extent of sprouting was significantly higher in TLE patients with HS than in other groups. Strong sprouting of parvalbumin-immunoreactive axons were frequently observed in patients who had childhood febrile seizure. Significant correlation was found between the level of sprouting of axons and the ratio of ectopic/normally-located parvalbumin-containing cells. Electron microscopy demonstrated that sprouted parvalbumin-immunoreactive axons terminate on proximal and distal dendritic shafts as well as on dendritic spines of granule cells. Our results indicate alteration of target profile of parvalbumin-immunoreactive neurons in HS that contributes to the known synaptic remodeling in TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Axones , Niño , Giro Dentado , Hipocampo , Humanos , Neuronas , Parvalbúminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...