Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35808218

RESUMEN

This paper presents datasets utilised for synthetic near-infrared (NIR) image generation and bounding-box level fruit detection systems. A high-quality dataset is one of the essential building blocks that can lead to success in model generalisation and the deployment of data-driven deep neural networks. In particular, synthetic data generation tasks often require more training samples than other supervised approaches. Therefore, in this paper, we share the NIR+RGB datasets that are re-processed from two public datasets (i.e., nirscene and SEN12MS), expanded our previous study, deepFruits, and our novel NIR+RGB sweet pepper (capsicum) dataset. We oversampled from the original nirscene dataset at 10, 100, 200, and 400 ratios that yielded a total of 127 k pairs of images. From the SEN12MS satellite multispectral dataset, we selected Summer (45 k) and All seasons (180k) subsets and applied a simple yet important conversion: digital number (DN) to pixel value conversion followed by image standardisation. Our sweet pepper dataset consists of 1615 pairs of NIR+RGB images that were collected from commercial farms. We quantitatively and qualitatively demonstrate that these NIR+RGB datasets are sufficient to be used for synthetic NIR image generation. We achieved Frechet inception distances (FIDs) of 11.36, 26.53, and 40.15 for nirscene1, SEN12MS, and sweet pepper datasets, respectively. In addition, we release manual annotations of 11 fruit bounding boxes that can be exported in various formats using cloud service. Four newly added fruits (blueberry, cherry, kiwi and wheat) compound 11 novel bounding box datasets on top of our previous work presented in the deepFruits project (apple, avocado, capsicum, mango, orange, rockmelon and strawberry). The total number of bounding box instances of the dataset is 162 k and it is ready to use from a cloud service. For the evaluation of the dataset, Yolov5 single stage detector is exploited and reported impressive mean-average-precision, mAP[0.5:0.95] results of min:0.49, max:0.812. We hope these datasets are useful and serve as a baseline for future studies.


Asunto(s)
Capsicum , Frutas , Agricultura , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Espectroscopía Infrarroja Corta
2.
Sensors (Basel) ; 21(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921483

RESUMEN

Sentiment prediction remains a challenging and unresolved task in various research fields, including psychology, neuroscience, and computer science. This stems from its high degree of subjectivity and limited input sources that can effectively capture the actual sentiment. This can be even more challenging with only text-based input. Meanwhile, the rise of deep learning and an unprecedented large volume of data have paved the way for artificial intelligence to perform impressively accurate predictions or even human-level reasoning. Drawing inspiration from this, we propose a coverage-based sentiment and subsentence extraction system that estimates a span of input text and recursively feeds this information back to the networks. The predicted subsentence consists of auxiliary information expressing a sentiment. This is an important building block for enabling vivid and epic sentiment delivery (within the scope of this paper) and for other natural language processing tasks such as text summarisation and Q&A. Our approach outperforms the state-of-the-art approaches by a large margin in subsentence prediction (i.e., Average Jaccard scores from 0.72 to 0.89). For the evaluation, we designed rigorous experiments consisting of 24 ablation studies. Finally, our learned lessons are returned to the community by sharing software packages and a public dataset that can reproduce the results presented in this paper.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Humanos , Lenguaje , Procesamiento de Lenguaje Natural , Proyectos de Investigación
3.
Sensors (Basel) ; 16(8)2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27527168

RESUMEN

This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0 . 807 to 0 . 838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit.


Asunto(s)
Frutas , Procesamiento de Imagen Asistido por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Robótica , Algoritmos , Capsicum , Humanos , Redes Neurales de la Computación
4.
Sensors (Basel) ; 15(9): 22003-48, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26340631

RESUMEN

This paper presents an algorithm and a system for vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures such as light and power distribution poles is a difficult task that is time-consuming, dangerous and expensive. Recently, micro VTOL platforms (i.e., quad-, hexa- and octa-rotors) have been rapidly gaining interest in research, military and even public domains. The unmanned, low-cost and VTOL properties of these platforms make them ideal for situations where inspection would otherwise be time-consuming and/or hazardous to humans. There are, however, challenges involved with developing such an inspection system, for example flying in close proximity to a target while maintaining a fixed stand-off distance from it, being immune to wind gusts and exchanging useful information with the remote user. To overcome these challenges, we require accurate and high-update rate state estimation and high performance controllers to be implemented onboard the vehicle. Ease of control and a live video feed are required for the human operator. We demonstrate a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. Two approaches are presented: Position-Based Visual Servoing (PBVS) using an Extended Kalman Filter (EKF) and estimator-free Image-Based Visual Servoing (IBVS). Both use monocular visual, inertia, and sonar data, allowing the approaches to be applied for indoor or GPS-impaired environments. We extensively compare the performances of PBVS and IBVS in terms of accuracy, robustness and computational costs. Results from simulations Sensors 2015, 15 22004 and indoor/outdoor (day and night) flight experiments demonstrate the system is able to successfully inspect and circumnavigate a vertical pole.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA