Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 231(Pt 2): 115989, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37119838

RESUMEN

In conjunction with global climate change, progressive ocean warming, and acclivity in pollution and anthropogenic eutrophication, the incidence of harmful algal blooms (HABs) and cyanobacterial harmful algal blooms (CHABs) continue to expand in distribution, frequency, and magnitude. Algal bloom-related toxins have been implicated in human health disorders and ecological dysfunction and are detrimental to the national and global economy. Biomonitoring programs based on traditional monitoring protocols were characterised by some limitations that can be efficiently overdone using the CRISPR/Cas technology. In the present review, the potential and challenges of exploiting the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas technology for early detection of HABs and CHABs-associated toxigenic species were analysed. Based on more than 30 scientific papers, the main results indicate the great potential of CRISPR/Cas technology for this issue, even if the high sensitivity detected for the Cas12 and Cas13 platforms represents a possible interference risk.


Asunto(s)
Monitoreo Biológico , Cianobacterias , Humanos , Sistemas CRISPR-Cas , Floraciones de Algas Nocivas , Cianobacterias/genética , Contaminación Ambiental
2.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 851-863, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36656353

RESUMEN

Mangiferin (1,3,6,7-tetrahydroxy-2-[3,4,5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] xanthen-9-one) is a bioactive component derived primarily from the mango tree. Belonging to the Xanthone family, its structure allows it to engage with a variety of pharmacological targets. The symmetric linked core of xanthones has a heterogeneous biogenetic background. The carbon atoms are designated in a biochemical order, which reveals the reason of ring A (C1-C4) being referred to as acetate originated, and ring B (C5-C8) is referred to as shikimate originated. The antibacterial, hypocholesterolemic, antiallergic, cardiotonic, antidiabetic, anti-neoplastic, neuroprotective, antioxidant and immunomodulatory properties have all been demonstrated for the secondary metabolite. This study assessed and explained the important medical properties of mangiferin available in published literature, as well as its natural source, biosynthesis, absorption and bioavailability; multiple administration routes; metabolism; nanotechnology for enhanced efficacy of mangiferin and its toxicity, to aid the anticipated on-going potential of mangiferin as a novel diagnostic treatment.


Asunto(s)
Mangifera , Xantonas , Xantonas/farmacología , Xantonas/uso terapéutico , Hipoglucemiantes/uso terapéutico , Extractos Vegetales/farmacología , Mangifera/química
3.
Appl Microbiol Biotechnol ; 107(2-3): 473-489, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36481800

RESUMEN

In vitro culture of a plant cell, tissue and organ is a marvellous, eco-friendly biotechnological strategy for the production of phytochemicals. With the emergence of recent biotechnological tools, genetic engineering is now widely practiced enhancing the quality and quantity of plant metabolites. Triterpenoid saponins especially asiaticoside and madecassoside of Centella asiatica (L.) Urb. are popularly known for their neuroprotective activity. It has become necessary to increase the production of asiaticoside and madecassoside because of their high pharmaceutical and industrial demand. Thus, the review aims to provide efficient biotechnological tools along with proper strategies. This review also included a comparative analysis of various carbon sources and biotic and abiotic elicitors. The vital roles of a variety of plant growth regulators and their combinations have also been evaluated at different in vitro growth stages of Centella asiatica. Selection of explants, direct and callus-mediated organogenesis, root organogenesis, somatic embryogenesis, synthetic seed production etc. are also highlighted in this study. In a nutshell, this review will present the research outcomes of different biotechnological interventions used to increase the yield of triterpenoid saponins in C. asiatica. KEY POINTS: • Critical and updated assessment on in vitro biotechnology in C. asiatica. • In vitro propagation of C. asiatica and elicitation of triterpenoid saponins production. • Methods for mass producing C. asiatica.


Asunto(s)
Centella , Saponinas , Triterpenos , Centella/genética , Centella/metabolismo , Triterpenos/metabolismo , Extractos Vegetales/metabolismo , Biotecnología , Saponinas/metabolismo
4.
Phytother Res ; 36(12): 4425-4476, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36256521

RESUMEN

Piper longum (family Piperaceae), commonly known as "long-pepper" or "Pippali" grows as a perennial shrub or as an herbaceous vine. It is native to the Indo-Malaya region and widely distributed in the tropical and subtropical world including the Indian subcontinent, Sri Lanka, Middle-East, and America. The fruits are mostly used as culinary spice and preservatives and are also a potent remedy in various traditional medicinal systems against bronchitis, cough, cold, snakebite, and scorpion-sting and are also used as a contraceptive. Various bioactive-phytochemicals including alkaloids, flavonoids, esters, and steroids were identified from the plant extracts and essential oils from the roots and fruits were reported as antimicrobial, antiparasitic, anthelminthic, mosquito-larvicidal, antiinflammatory, analgesic, antioxidant, anticancer, neuro-pharmacological, antihyperglycaemic, hepato-protective, antihyperlipidaemic, antiangiogenic, immunomodulatory, antiarthritic, antiulcer, antiasthmatic, cardioprotective, and anti-snake-venom agents. Many of its pharmacological properties were attributed to its antioxidative and antiinflammatory effects and its ability to modulate a number of signalling pathways and enzymes. This review comprehensively encompasses information on habit, distribution, ethnobotany, phytochemistry, and pharmacology of P. longum in relation to its medicinal importance and health benefits to validate the traditional claims supported by specific scientific experiments. In addition, it also discusses the safety and toxicity studies, application of green synthesis and nanotechnology as well as clinical trials performed with the plant also elucidating research gaps and future perspectives of its multifaceted uses.


Asunto(s)
Tos , Etnobotánica , Humanos , Malasia
5.
J Cell Mol Med ; 26(11): 3083-3119, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35502487

RESUMEN

Piper betle L. (synonym: Piper betel Blanco), or betel vine, an economically and medicinally important cash crop, belongs to the family Piperaceae, often known as the green gold. The plant can be found all over the world and is cultivatedprimarily in South East Asian countries for its beautiful glossy heart-shaped leaves, which are chewed or consumed as betelquidand widely used in Chinese and Indian folk medicine, as carminative, stimulant,astringent, against parasitic worms, conjunctivitis, rheumatism, wound, etc., andis also used for religious purposes. Hydroxychavicol is the most important bioactive compound among the wide range of phytoconstituents found in essential oil and extracts. The pharmacological attributes of P. betle are antiproliferation, anticancer, neuropharmacological, analgesic, antioxidant, antiulcerogenic, hepatoprotective, antifertility, antibacterial, antifungal and many more. Immense attention has been paid to nanoformulations and their applications. The application of P. betle did not show cytotoxicity in preclinical experiments, suggesting that it could serve as a promising therapeutic candidate for different diseases. The present review comprehensively summarizes the botanical description, geographical distribution, economic value and cultivation, ethnobotanical uses, preclinical pharmacological properties with insights of toxicological, clinical efficacy, and safety of P. betle. The findings suggest that P. betle represents an orally active and safe natural agent that exhibits great therapeutic potential for managing various human medical conditions. However, further research is needed to elucidate its underlying molecular mechanisms of action, clinical aspects, structure-activity relationships, bioavailability and synergistic interactions with other drugs.


Asunto(s)
Piper betle , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Etnofarmacología , Piper betle/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química
6.
Biomed Pharmacother ; 143: 112175, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649336

RESUMEN

Withania somnifera (L.) Dunal (Solanaceae) has been used as a traditional Rasayana herb for a long time. Traditional uses of this plant indicate its ameliorative properties against a plethora of human medical conditions, viz. hypertension, stress, diabetes, asthma, cancer etc. This review presents a comprehensive summary of the geographical distribution, traditional use, phytochemistry, and pharmacological activities of W. somnifera and its active constituents. In addition, it presents a detailed account of its presence as an active constituent in many commercial preparations with curative properties and health benefits. Clinical studies and toxicological considerations of its extracts and constituents are also elucidated. Comparative analysis of relevant in-vitro, in-vivo, and clinical investigations indicated potent bioactivity of W. somnifera extracts and phytochemicals as anti-cancer, anti-inflammatory, apoptotic, immunomodulatory, antimicrobial, anti-diabetic, hepatoprotective, hypoglycaemic, hypolipidemic, cardio-protective and spermatogenic agents. W. somnifera was found to be especially active against many neurological and psychological conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke, sleep deprivation, amyotrophic lateral sclerosis, attention deficit hyperactivity disorder, bipolar disorder, anxiety, depression, schizophrenia and obsessive-compulsive disorder. The probable mechanism of action that imparts the pharmacological potential has also been explored. However, in-depth studies are needed on the clinical use of W. somnifera against human diseases. Besides, detailed toxicological analysis is also to be performed for its safe and efficacious use in preclinical and clinical studies and as a health-promoting herb.


Asunto(s)
Etnofarmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Withania , Animales , Antivirales/aislamiento & purificación , Antivirales/farmacología , COVID-19/virología , Humanos , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/toxicidad , Seguridad del Paciente , Fitoquímicos/aislamiento & purificación , Fitoquímicos/toxicidad , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Raíces de Plantas , Psicotrópicos/aislamiento & purificación , Psicotrópicos/farmacología , Psicotrópicos/toxicidad , Medición de Riesgo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Withania/química , Tratamiento Farmacológico de COVID-19
7.
Conserv Physiol ; 9(1): coab073, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34548925

RESUMEN

The discipline 'urban ethnopharmacology' emerged as a collection of traditional knowledge, ancient civilizations, history and folklore being circulated since generations, usage of botanical products, palaeobotany and agronomy. Non-traditional botanical knowledge increases the availability of healthcare and other essential products to the underprivileged masses. Intercultural medicine essentially involves 'practices in healthcare that bridge indigenous medicine and western medicine, where both are considered as complementary'. A unique aspect of urban ethnopharmacology is its pluricultural character. Plant medicine blossomed due to intercultural interactions and has its roots in major anthropological events of the past. Unani medicine was developed by Khalif Harun Al Rashid and Khalif Al Mansur by translating Greek and Sanskrit works. Similarly, Indo-Aryan migration led to the development of Vedic culture, which product is Ayurveda. Greek medicine reached its summit when it travelled to Egypt. In the past few decades, ethnobotanical field studies proliferated, especially in the developed countries to cope with the increasing demands of population expansion. At the same time, sacred groves continued to be an important method of conservation across several cultures even in the urban aspect. Lack of scientific research, validating the efficiency, messy applications, biopiracy and slower results are the main constrains to limit its acceptability. Access to resources and benefit sharing may be considered as a potential solution. Indigenous communities can copyright their traditional formulations and then can collaborate with companies, who have to provide the original inventors with a fair share of the profits since a significant portion of the health economy is generated by herbal medicine. Search string included the terms 'Urban' + 'Ethnopharmacology', which was searched in Google Scholar to retrieve the relevant literature. The present review aims to critically analyse the global concept of urban ethnopharmacology with the inherent plurality of the cross-cultural adaptations of medicinal plant use by urban people across the world.

8.
Front Pharmacol ; 12: 772418, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069196

RESUMEN

Piperine and piperidine are the two major alkaloids extracted from black pepper (Piper nigrum); piperidine is a heterocyclic moiety that has the molecular formula (CH2)5NH. Over the years, many therapeutic properties including anticancer potential of these two compounds have been observed. Piperine has therapeutic potential against cancers such as breast cancer, ovarian cancer, gastric cancer, gliomal cancer, lung cancer, oral squamous, chronic pancreatitis, prostate cancer, rectal cancer, cervical cancer, and leukemia. Whereas, piperidine acts as a potential clinical agent against cancers, such as breast cancer, prostate cancer, colon cancer, lung cancer, and ovarian cancer, when treated alone or in combination with some novel drugs. Several crucial signalling pathways essential for the establishment of cancers such as STAT-3, NF-κB, PI3k/Aκt, JNK/p38-MAPK, TGF-ß/SMAD, Smac/DIABLO, p-IκB etc., are regulated by these two phytochemicals. Both of these phytochemicals lead to inhibition of cell migration and help in cell cycle arrest to inhibit survivability of cancer cells. The current review highlights the pharmaceutical relevance of both piperine and piperidine against different types of cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...