Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 637: 363-371, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36716662

RESUMEN

The development of a non-noble, highly efficient bifunctional catalyst for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) is the bottleneck in the alkaline direct methanol fuel cells (ADMFC). Ni-based bi/tri metallic alloys are the promising candidates next to the noble metals in the alkaline medium.Herein we present a facile hydrazine-assisted hydrothermal technique to synthesize a trimetallic nickel-cobalt-tin (NiCoSn) alloy as an efficient electrocatalyst for MOR and ORR reactions. The physiochemical analysis confirms the formation of trimetallic alloys with a high surface area. The as-synthesized trimetallic NiCoSn electrocatalyst exhibited superior MOR activity in terms of mass activity (509 mA mg-1 at 1.55 V vs RHE) and stability than the bimetallic alloys in 1.0 M KOH electrolyte. Further, the trimetallic alloy delivered a lower onset and half-wave potential of 0.8 and 0.72 V vs RHE with the favorable four-electron transfer in the oxygen reduction reactions. This work highlights a facile approach for preparing Ni-based trimetallic alloys as a promising candidate for the alkaline direct methanol fuel cells/other catalytic applications.

2.
Sci Rep ; 12(1): 2004, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132114

RESUMEN

A wide variety of electrocatalysts has been evolved for hydrogen evolution reaction (HER) and it is reasonable to carry out HER with low cost electrocatalyst and a good efficiency. In this study, Cu3N was synthesized by nitridation of Cu2O and further utilized as an electrocatalyst towards HER. The developed Cu3N electrocatalyst was tested and results showed a low overpotential and moderate Tafel slope value (overpotential: 149.18 mV and Tafel slope 63.28 mV/dec at 10 mA/cm2) in alkaline medium with a charge transfer resistance value as calculated from electrochemical impendence spectroscopy being 1.44 Ω. Further from the experimental results, it was observed that the reaction kinetics was governed by Volmer-Heyrovsky mechanism. Moreover, Cu3N has shown an improved rate of electron transfer and enhanced accessible active sites, due to its structural properties and electrical conductivity. Thus the overall results show an excellent electrochemical performance, leading to a new pathway for the synthesis of low cost electrocatalyst for energy conversion and storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA