Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Dyn ; 252(8): 1096-1112, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36734001

RESUMEN

BACKGROUND: The optic tectum is the main visual processor of nonmammalian vertebrates and relays visual information from the eye to the telencephalon via the tectofugal pathway. In the development of the avian optic tectum, while the multipolar neurons are arranged by tangential migration, the behavior of individual cells in tangential migration, neural differentiation, and cell fate remain unclear. Here, we pursued the transition of tangentially migrating cells and their involvement in visual circuit formation during chick development. RESULTS: After tangential movement along the axons, the migrating cells relocated to the upper layers and turned back upon differentiation toward the multipolar neurons. The multipolar neurons are destined to differentiate into the stratum griseum central (SGC) neurons with the large dendritic field, which form the tectorotundal projection. Trans-synaptic virus labeling demonstrated that the tangentially migrating cells eventually participate in the tectofugal visual pathway. CONCLUSIONS: These results indicate that tangential migration is a crucial process in the formation of the tectofugal visual pathway during the development of the optic tectum.


Asunto(s)
Colículos Superiores , Vías Visuales , Animales , Colículos Superiores/metabolismo , Pollos , Neuronas , Axones
2.
Dev Growth Differ ; 63(7): 372-391, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34473348

RESUMEN

The developmental hourglass model predicts that embryonic morphology is most conserved at the mid-embryonic stage and diverges at the early and late stages. To date, this model has been verified by examining the anatomical features or gene expression profiles at the whole embryonic level. Here, by data mining approach utilizing multiple genomic and transcriptomic datasets from different species in combination, and by experimental validation, we demonstrate that the hourglass model is also applicable to a reduced element, the spinal cord. In the middle of spinal cord development, dorsoventrally arrayed neuronal progenitor domains are established, which are conserved among vertebrates. By comparing the publicly available single-cell transcriptome datasets of mice and zebrafish, we found that ventral subpopulations of post-mitotic spinal neurons display divergent molecular profiles. We also detected the non-conservation of cis-regulatory elements located around the progenitor fate determinants, indicating that the cis-regulatory elements contributing to the progenitor specification are evolvable. These results demonstrate that, despite the conservation of the progenitor domains, the processes before and after the progenitor domain specification diverged. This study will be helpful to understand the molecular basis of the developmental hourglass model.


Asunto(s)
Transcriptoma , Pez Cebra , Animales , Regulación del Desarrollo de la Expresión Génica , Organogénesis , Médula Espinal , Transcriptoma/genética , Pez Cebra/genética
3.
J Vis Exp ; (140)2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30417886

RESUMEN

Time-lapse imaging is a powerful method to analyze migrating cell behavior. After fluorescent cell labeling, the movement of the labeled cells in culture can be recorded under video microscopy. For analyzing cell migration in the developing brain, slice culture is commonly used to observe cell migration parallel to the slice section, such as radial cell migration. However, limited information can be obtained from the slice culture method to analyze cell migration perpendicular to the slice section, such as tangential cell migration. Here, we present the protocols for time-lapse imaging to visualize tangential cell migration in the developing chick optic tectum. A combination of cell labeling by electroporation in ovo and a subsequent flat-mount culture on the cell culture insert enables detection of migrating cell movement in the horizontal plane. Moreover, our method facilitates detection of both individual cell behavior and the collective action of a group of cells in the long term. This method can potentially be applied to detect the sequential change of the fluorescent-labeled micro-structure, including the axonal elongation in the neural tissue or cell displacement in the non-neural tissue.


Asunto(s)
Neurogénesis/fisiología , Colículos Superiores/fisiopatología , Animales , Técnicas de Cultivo de Célula , Movimiento Celular , Pollos
4.
Dev Biol ; 437(2): 131-139, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29548944

RESUMEN

During embryonic brain development, groups of particular neuronal cells migrate tangentially to participate in the formation of a laminated structure. Two distinct types of tangential migration in the middle and superficial layers have been reported in the development of the avian optic tectum. Here we show the dynamics of tangential cell movement in superficial layers of developing chick optic tectum. Confocal time-lapse microscopy in organotypic slice cultures and flat-mount cultures revealed that vigorous cell migration continued during E6.5-E13.5, where horizontally elongated superficial cells spread out tangentially. Motile cells exhibited exploratory behavior in reforming the branched leading processes to determine their pathway, and intersected with each other for dispersion. At the tectal peripheral border, the cells retraced or turned around to avoid protruding over the border. The tangentially migrating cells were eventually distributed in the outer stratum griseum et fibrosum superficiale and differentiated into neurons of various morphologies. These results revealed the cellular dynamics for widespread neuronal distribution in the superficial layers of the developing optic tectum, which underline a mode of novel tangential neuronal migration in the developing brain.


Asunto(s)
Movimiento Celular/fisiología , Neurogénesis/fisiología , Colículos Superiores/embriología , Animales , Técnicas de Cultivo de Célula , Pollos , Electroporación , Neuronas/fisiología , Imagen de Lapso de Tiempo
5.
Development ; 144(24): 4645-4657, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29061638

RESUMEN

In the developing chick embryo, a certain population of motor neurons (MNs) in the non-limb-innervating cervical spinal cord undergoes apoptosis between embryonic days 4 and 5. However, the characteristics of these apoptotic MNs remain undefined. Here, by examining the spatiotemporal profiles of apoptosis and MN subtype marker expression in normal or apoptosis-inhibited chick embryos, we found that this apoptotic population is distinguishable by Foxp1 expression. When apoptosis was inhibited, the Foxp1+ MNs survived and showed characteristics of lateral motor column (LMC) neurons, which are of a limb-innervating subtype, suggesting that cervical Foxp1+ MNs are the rostral continuation of the LMC. Knockdown and misexpression of Foxp1 did not affect apoptosis progression, but revealed the role of Foxp1 in conferring LMC identity on the cervical MNs. Furthermore, ectopic expression of Hox genes that are normally expressed in the brachial region prevented apoptosis, and directed Foxp1+ MNs to LMC neurons at the cervical level. These results indicate that apoptosis in the cervical spinal cord plays a role in sculpting Foxp1+ MNs committed to LMC neurons, depending on the Hox expression pattern.


Asunto(s)
Apoptosis/fisiología , Proteínas Aviares/genética , Médula Cervical/embriología , Embrión de Pollo/embriología , Factores de Transcripción Forkhead/genética , Proteínas de Homeodominio/metabolismo , Neuronas Motoras/metabolismo , Animales , Proteínas Aviares/biosíntesis , Diferenciación Celular , Línea Celular , Factores de Transcripción Forkhead/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Interferencia de ARN , ARN Interferente Pequeño/genética
6.
Development ; 141(18): 3572-82, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25183873

RESUMEN

The optic tectum comprises multiple layers, which are formed by radial and tangential migration during development. Here, we report that Neuropilin 1 (NRP1)-mediated Sema3A signals are involved in the process of tectal laminar formation, which is elaborated by tangential migration. In the developing chick tectum, NRP1, a receptor for Sema3A, is expressed in microtubule-associated protein 2 (MAP2)-positive intermediate layers IV and V. Sema3A itself is a diffusible guidance factor and is expressed in the overlying layer VI. Using stable fluorescent labeling of tectal cells, we show that MAP2-positive intermediate layers are formed by the neurons that have been dispersed by tangential migration along the tectal efferent axons. When Sema3A was mis-expressed during laminar formation, local Sema3A repelled the tangential migrants, thus eliminating MAP2-positive neurons that expressed NRP1. Furthermore, in the absence of the MAP2-positive neurons, tectal layers were disorganized into an undulated form, indicating that MAP2-positive intermediate layers are required for proper laminar formation. These results suggest that NRP1-mediated Sema3A signals provide repulsive signals for MAP2-positive neurons to segregate tectal layers, which is important in order to coordinate laminar organization of the optic tectum.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Neuropilina-1/metabolismo , Organogénesis/fisiología , Semaforina-3A/metabolismo , Transducción de Señal/fisiología , Colículos Superiores/embriología , Animales , Bromodesoxiuridina , Movimiento Celular/fisiología , Embrión de Pollo , Electroporación , Fluorescencia , Hibridación in Situ , Microscopía Confocal , Colículos Superiores/metabolismo
7.
Congenit Anom (Kyoto) ; 54(1): 63-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24588779

RESUMEN

Follistatin-like 5 (Fstl5), a member of the follistatin family of genes, encodes a secretory glycoprotein. Previous studies revealed that other members of this family including Fstl1 and Fstl3 play an essential role in development, homeostasis, and congenital disorders. However, the in vivo function of Fstl5 is poorly understood. To gain insight into the function of Fstl5 in the mouse central nervous system, we examined the Fstl5 expression pattern in the adult mouse brain. The results of in situ hybridization analysis showed a highly restricted pattern of Fstl5, namely, with localization in the olfactory system, hippocampal CA3 area and granular cell layer of the cerebellum. Restricted expression in the olfactory system suggests a possible role for Fstl5 in maintaining odor perception.


Asunto(s)
Proteínas Relacionadas con la Folistatina/biosíntesis , Folistatina/genética , Odorantes , Vías Olfatorias , Animales , Folistatina/biosíntesis , Proteínas Relacionadas con la Folistatina/genética , Regulación de la Expresión Génica/genética , Hipocampo/metabolismo , Humanos , Hibridación in Situ , Ratones , ARN Mensajero/biosíntesis
8.
Cell Adh Migr ; 8(6): 603-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25622099

RESUMEN

Elongation of the efferent fibers of dorsal root ganglion (DRG) neurons toward their peripheral targets occurs during development. Attractive or permissive systems may be involved in this elongation. However, the molecular mechanisms that control it are largely unknown. Here we show that class 5 semaphorin Sema5A had attractive/permissive effects on DRG axons. In mouse embryos, Sema5A was expressed in and around the path of DRG efferent fibers, and cell aggregates secreting Sema5A attracted DRG axons in vitro. We also found that ectopic Sema5A expression in the spinal cord attracted DRG axons. Together, these findings suggest that Sema5A functions as an attractant to elongate DRG fibers and contributes to the formation of the early sensory network.


Asunto(s)
Axones/fisiología , Ganglios Espinales/embriología , Semaforinas/metabolismo , Animales , Embrión de Pollo , Ratones , Médula Espinal/embriología , Médula Espinal/metabolismo
9.
Congenit Anom (Kyoto) ; 53(3): 122-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23998265

RESUMEN

The spinal nerve, which is composed of dorsal root ganglion (DRG) sensory axons and spinal motor axons, forms the dorsal ramus projecting to the dorsal musculature. By using the free-floating immunohistochemistry method, we closely examined the spatiotemporal pattern of the formation of the dorsal ramus and the relationship between its projection to the myotome/dorsal musculature and semaphorin 3A (Sema3A), which is an axonal guidance molecule. In embryonic day (E) 10.5-E11.5 wild-type mouse embryos, we clearly showed the existence of a waiting period for the dorsal ramus projection to the myotome. In contrast, in E10.5-E11.5 Sema3A-deficient embryos, the dorsal ramus fibers projected beyond the edge of the myotome without exhibiting the waiting period for projection. These results strongly suggest that the delayed innervation by dorsal ramus fibers may be caused by Sema3A-induced axon repulsion derived from the myotome. Next, by performing culture experiments, we confirmed that E12.5 mouse axons responded to Sema3A-induced repulsion. Together, our results imply that Sema3A may play a key role in the proper development of the dorsal ramus projection.


Asunto(s)
Músculo Esquelético/inervación , Semaforina-3A/metabolismo , Raíces Nerviosas Espinales/metabolismo , Animales , Axones/metabolismo , Ratones , Ratones Noqueados , Semaforina-3A/genética , Raíces Nerviosas Espinales/embriología
10.
J Comp Neurol ; 521(13): 2987-3002, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23504940

RESUMEN

The avian cervical spinal cord includes motoneurons (MNs) that send their axons through the dorsal roots. They have been called dorsal motoneurons (dMNs) and assumed to correspond to MNs of the accessory nerve that innervate the cucullaris muscle (SAN-MNs). However, their target muscles have not been elucidated to date. The present study sought to determine the targets and the specific combination of transcription factors expressed by dMNs and SAN-MNs and to describe the detailed development of dMNs. Experiments with tracing techniques confirmed that axons of dMNs innervated the cucullaris muscle. Retrogradely labeled dMNs were distributed in the ventral horn of C3 and more caudal segments. In most cases, some dMNs were also observed in the C2 segment. It was also demonstrated that SAN-MNs existed in the ventral horn of the C1-2 segments and the adjacent caudal hindbrain. Both SAN-MNs and dMNs expressed Isl1 but did not express Isl2, MNR2, or Lhx3. Rather, these MNs expressed Phox2b, a marker for branchial motoneurons (brMNs), although the intensity of expression was weaker. Dorsal MNs and SAN-MNs were derived from the Nkx2.2-positive precursor domain and migrated dorsally. Dorsal MNs remain in the ventral domain of the neural tube, unlike brMNs in the brainstem. These results indicate that dMNs and SAN-MNs belong to a common MN population innervating the cucullaris muscle and also suggest that they are similar to brMNs of the brainstem, although there are differences in Phox2b expression and in the final location of each population. J. Comp. Neurol. 521: 2987-3002, 2013. © 2013 Wiley Periodicals, Inc.


Asunto(s)
Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Raíces Nerviosas Espinales/citología , Nervio Accesorio/fisiología , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Embrión de Pollo , Dextranos/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Músculo Esquelético/embriología , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/fisiología , Compuestos de Fenilurea/administración & dosificación , Raíces Nerviosas Espinales/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
11.
Congenit Anom (Kyoto) ; 53(4): 141-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24712472

RESUMEN

Huntingtin-interacting protein 1-related (Hip1r) was originally identified due to its homology to Huntingtin-interacting protein 1, which contributes to the development of Huntington's disease (HD). We studied the expression of the mouse Hip1r (mHip1r) gene in the mouse head by in situ hybridization. In early embryogenesis at embryonic day (E) 13, mHip1r expression was especially prominent in the olfactory epithelium, cerebral cortex layer 1, cortical plate, and dentate gyrus. During later development from E15 to E17, strong expression of mHip1r transcripts continued to be observed in the olfactory epithelium, cortical plate, and dentate gyrus. Furthermore, not only the subplate and subventricular zone of the cortex, but also secretory glands, such as the nasal gland and the submandibular gland, were mHip1r-positive. Other positive tissues included the retinal ganglion cells, vomeronasal organ, trigeminal ganglion, and the developing molar tooth. In the adult mouse brain, similar expression patterns were observed in the cerebral cortex layers and other brain regions except the cerebellum. Additionally, by using an antibody against mHip1r, we confirmed these expression patterns at the protein level. Specific expression of mHip1r in the embryonic brain and secretory glands suggests a possible role for Hip1r in normal development and in the pathology of HD.


Asunto(s)
Encéfalo/embriología , Encéfalo/metabolismo , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al ADN/metabolismo , Femenino , Enfermedad de Huntington/genética , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Proteínas de Microfilamentos , Especificidad de Órganos/genética , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Brain Res ; 1480: 30-40, 2012 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-22981415

RESUMEN

The spinal nerve, which is composed of dorsal root ganglion (DRG) axons and spinal motor axons, divides into ventral and dorsal rami. Although the development of the ventral ramus has been examined in considerable detail, that of the dorsal ramus has not. Therefore, we first examined the spatial-temporal pattern of the dorsal ramus formation in the chick embryo, with special reference to the projection to the dermamyotome and its derivatives. Next, we focused on two guidance molecules, chick semaphorin 3A (SEMA3A) and fibroblast growth factor 8 (FGF8), because these are the best candidates as molecules for controlling the dorsal ramus formation. Using in situ hybridization and immunohistochemistry methods, we clearly showed a close relationship between the spatial-temporal expression of SEMA3A/FGF8 and the projection of dorsal ramus fibers to the dorsal muscles. We further examined the axonal response of motor and DRG neurons to SEMA3A and FGF8. We showed that motor axons responded to both SEMA3A-induced repulsion and FGF8-induced attraction. On the other hand, DRG axons responded to SEMA3A-induced repulsion but not to FGF8-induced attraction. These findings suggest that FGF8-induced attraction may guide early motor axons beneath the myotome and that SEMA3A-induced repulsion may prevent these early motor axons from entering the myotome. Our results also imply that the loss of SEMA3A expression in the dorsal muscles may lead to the gross projection of the dorsal ramus fibers into the dorsal muscles. Together, SEMA3A and FGF8 may contribute to the proper formation of the dorsal ramus.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos/metabolismo , Conos de Crecimiento/metabolismo , Semaforina-3A/metabolismo , Nervios Espinales/embriología , Animales , Axones/metabolismo , Embrión de Pollo , Neuronas/metabolismo , Nervios Espinales/metabolismo
13.
Fukushima J Med Sci ; 55(1): 1-6, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19999164

RESUMEN

During development, dorsal root ganglion (DRG) neurons in higher vertebrates extend their axons centrally to the spinal cord through the dorsal root entry zone (DREZ) and peripherally to muscle and skin targets. After entering the spinal cord, DRG axons project into the dorsal mantle layer. In this review, we focus on evidence showing the role for netrin-1 in forming sensory axonal trajectories. Netrin-1 is a diffusible axonal guidance molecule that chemorepels developing DRG axons. When DRG axons project toward the DREZ, ventral spinal cord-derived netrin-1 prevents DRG axons from projecting aberrantly toward the ventral spinal cord. At later stages, the dorsal spinal cord cells transiently express netrin-1. This dorsal spinal cord-derived netrin-1 prevents DRG axons from invading the dorsal spinal cord during the waiting period. Together, the data reviewed provide strong evidence that netrin-1 plays a crucial role in sensory axon projection during development.


Asunto(s)
Axones/fisiología , Ganglios Espinales/fisiología , Factores de Crecimiento Nervioso/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Axones/ultraestructura , Ganglios Espinales/embriología , Humanos , Ratones , Netrina-1 , Vías Nerviosas , Médula Espinal/fisiología
14.
Cell Adh Migr ; 3(2): 171-3, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19262170

RESUMEN

During development, dorsal root ganglion (DRG) neurons extend their axons toward the dorsolateral part of the spinal cord and enter the spinal cord through the dorsal root entry zone (DREZ). After entering the spinal cord, these axons project into the dorsal mantle layer after a 'waiting period' of a few days. We revealed that the diffusible axonal guidance molecule netrin-1 is a chemorepellent for developing DRG axons. When DRG axons orient themselves toward the DREZ, netrin-1 proteins derived from the ventral spinal cord prevent DRG axons from projecting aberrantly toward the ventral spinal cord and help them to project correctly toward the DREZ. In addition to the ventrally derived netrin-1, the dorsal spinal cord cells adjacent to the DREZ transiently express netrin-1 proteins during the waiting period. This dorsally derived netrin-1 contributes to the correct guidance of DRG axons to prevent them from invading the dorsal spinal cord. In general, there is a complete lack of sensory axonal regeneration after a spinal cord injury, because the dorsal column lesion exerts inhibitory activities toward regenerating axons. Netrin-1 is a novel candidate for a major inhibitor of sensory axonal regeneration in the spinal cord; because its expression level stays unchanged in the lesion site following injury, and adult DRG neurons respond to netrin-1-induced axon repulsion. Although further studies are required to show the involvement of netrin-1 in preventing the regeneration of sensory axons in CNS injury, the manipulation of netrin-1-induced repulsion in the CNS lesion site may be a potent approach for the treatment of human spinal injuries.


Asunto(s)
Axones/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Regeneración , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Humanos , Ratones , Netrina-1 , Médula Espinal/citología , Médula Espinal/metabolismo , Médula Espinal/fisiología
15.
Brain Res ; 1249: 61-7, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19026994

RESUMEN

During early development, centrally projecting dorsal root ganglion (DRG) neurons extend their axons toward the dorsal spinal cord. We previously reported that this projection is achieved by dorsal spinal cord-derived chemoattraction. However, the molecular nature of the chemotrophic cue is not yet fully understood. To identify novel genes differentially expressed in the dorsal spinal cord in the embryonic day 10.5 mouse, we used the Kazusa cDNA array system comprising approximately 1700 mouse KIAA/FLJ (mKIAA/mFLJ) cDNA clones and laser capture microdissection (LCM) in combination with PCR-based cDNA amplification. We observed that a certain population of genes showed significantly increased expression in the dorsal spinal cord. In situ hybridization analysis verified the expression of mRNAs of 6 genes (Hip1r, Nav2, Fstl5, Cacna1h, Bcr, and Bmper) in the cells that constitute the dorsal spinal cord. The dorsal spinal cord-specific genes identified in this study provide a basis for studying the molecular nature of the neural development including the axonal guidance of DRG neurons. These results also demonstrate that the combined use of LCM coupled with the Kazusa cDNA array technology will be useful for the identification of large proteins expressed in the restricted small regions of embryos.


Asunto(s)
Expresión Génica , Proteínas de la Membrana/genética , Médula Espinal/embriología , Médula Espinal/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Canales de Calcio Tipo T/genética , Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Inmunohistoquímica , Hibridación in Situ , Ratones , Microdisección , Proteínas de Microfilamentos , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas c-bcr/genética , ARN Mensajero/metabolismo
16.
J Neurosci Res ; 87(2): 353-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18798276

RESUMEN

During early development, centrally projecting dorsal root ganglion (DRG) neurons extend their axons toward the dorsal spinal cord. We previously reported the involvement of dorsal spinal cord-derived chemoattraction in this projection (Masuda et al. [ 2007] Neuroreport 18:1645-1649). However, the molecular nature of this attraction is not clear. Here we show that laminin-1 (alpha1beta1gamma1) is expressed strongly along the pathway of DRG axons and that its 67-kDa receptor (67LR) is present on DRG cells. This evidence suggests that laminin-1-67LR signaling may be involved in DRG axonal guidance. By employing culture assays, we show that laminin-1 or the YIGSR peptide, a soluble peptide of the laminin beta1 chain, promotes the DRG axonal response to dorsal spinal cord-derived chemoattraction. By using a function-blocking antibody against 67LR, we show that the anti-67LR antibody blocks the modulation of DRG axonal response by the YIGSR peptide in vitro. Furthermore, the in ovo injection of the anti-67LR antibody inhibits the DRG axonal growth toward the dorsal spinal cord. These results provide evidence that the YIGSR peptide promotes dorsal spinal cord-derived chemoattraction via 67LR to contribute to the formation of the initial trajectories of developing DRG axons.


Asunto(s)
Axones/metabolismo , Ganglios Espinales/crecimiento & desarrollo , Factores de Crecimiento Nervioso/metabolismo , Oligopéptidos/metabolismo , Receptores de Laminina/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Factores Quimiotácticos/metabolismo , Embrión de Pollo , Inmunohistoquímica , Hibridación in Situ , Laminina/metabolismo , Células Receptoras Sensoriales/citología
17.
J Neurosci ; 28(41): 10380-5, 2008 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-18842897

RESUMEN

During early development, the ventral spinal cord expresses chemorepulsive signals that act on dorsal root ganglion (DRG) axons to help orient them toward the dorsolateral part of the spinal cord. However, the molecular nature of this chemorepulsion is mostly unknown. We report here that netrin-1 acts as an early ventral spinal cord-derived chemorepellent for DRG axons. In the developing mouse spinal cord, netrin-1 is expressed in the floor plate of the spinal cord, and the netrin receptor Unc5c is expressed in DRG neurons. We show that human embryonic kidney cell aggregates secreting netrin-1 repel DRG axons and that netrin-1-deficient ventral spinal cord explants lose their repulsive influence on DRG axons. In embryonic day 10 netrin-1 mutant mice, we find that DRG axons exhibit transient misorientation. Furthermore, by means of gain-of-function analyses, we show that ectopic netrin-1 in the dorsal and intermediate spinal cord prevents DRG axons from being directed toward the dorsal spinal cord. Together, these findings suggest that netrin-1 contributes to the formation of the initial trajectories of developing DRG axons as a repulsive guidance cue.


Asunto(s)
Axones/fisiología , Quimiotaxis/fisiología , Ganglios Espinales/embriología , Factores de Crecimiento Nervioso/fisiología , Neuronas Aferentes/fisiología , Médula Espinal/embriología , Transmisión Sináptica/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Línea Celular , Señales (Psicología) , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/fisiología , Desarrollo Embrionario , Ganglios Espinales/citología , Humanos , Técnicas In Vitro , Ratones , Ratones Mutantes , Mutación , Factores de Crecimiento Nervioso/genética , Receptores de Netrina , Netrina-1 , Vías Nerviosas/fisiología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Proteínas Supresoras de Tumor/genética
18.
Neuroreport ; 18(16): 1645-9, 2007 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-17921861

RESUMEN

In the early stages, the dorsal root ganglion neurons extend their axons toward the dorsal spinal cord. We previously showed that surround repulsion by semaphorin 3A prevents sensory axons from straying from their paths. The finding, however, that sensory trajectories toward the dorsal spinal cord are almost normal in semaphorin 3A-deficient littermates raises the possibility that a chemoattraction-based mechanism also contributes to the formation of sensory axonal projections. By employing culture assays, we show that the dorsal spinal cord secretes chemoattractants for the dorsal root ganglion axons. Furthermore, we demonstrate that the activity of a dorsal spinal cord-derived cue is specific for early sensory axons. These results suggest that dorsal spinal cord-derived chemoattractants contribute to the formation of the initial trajectories of sensory axons.


Asunto(s)
Axones/metabolismo , Ganglios Espinales/embriología , Factores de Crecimiento Nervioso/metabolismo , Neuronas Aferentes/metabolismo , Médula Espinal/embriología , Raíces Nerviosas Espinales/embriología , Vías Aferentes/citología , Vías Aferentes/embriología , Vías Aferentes/metabolismo , Animales , Axones/ultraestructura , Bioensayo , Tipificación del Cuerpo/fisiología , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Células Cultivadas , Factores Quimiotácticos/metabolismo , Embrión de Pollo , Técnicas de Cocultivo , Señales (Psicología) , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Neuronas Aferentes/citología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Semaforina-3A/deficiencia , Semaforina-3A/genética , Médula Espinal/metabolismo , Raíces Nerviosas Espinales/citología , Raíces Nerviosas Espinales/metabolismo
19.
J Neurobiol ; 53(3): 381-90, 2002 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12382265

RESUMEN

Motoneurons (MNs) in the cervical spinal cord of the chicken embryo undergo programmed cell death (PCD) between embryonic day (E) 4 and E5. The intracellular molecules regulating this early phase of PCD remain unknown. Here we show that introduction of Bcl-2 by a replication-competent avian retroviral vector prevented MN degeneration at E4.5, whereas the expression of the green fluorescent protein (GFP) was ineffective. Bcl-2 expression did not affect the number of Islet-1/2-positive MNs at the onset of cell death (E4). However, when examined at the end of the cell death period (E5.5), the number of Islet-1/2-positive MNs was clearly increased in Bcl-2-transfected embryos compared with control and GFP-transfected embryos. Activation of caspase-3, which is normally observed in this early MN death, was also prevented by Bcl-2. Thus, MNs in the cervical spinal cord appear to use intracellular pathway(s) for early PCD that is responsive to Bcl-2.


Asunto(s)
Apoptosis/fisiología , Genes bcl-2/fisiología , Neuronas Motoras/metabolismo , Animales , Apoptosis/efectos de los fármacos , Vértebras Cervicales/efectos de los fármacos , Vértebras Cervicales/metabolismo , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Vectores Genéticos/administración & dosificación , Humanos , Neuronas Motoras/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo
20.
J Virol ; 76(4): 1980-5, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11799192

RESUMEN

Rous sarcoma virus (RSV)-derived retroviral vector could efficiently deliver the green fluorescent protein (GFP), which is driven by the internal cytomegalovirus enhancer/promoter, into restricted cell populations in the chicken embryo. RSV-derived vectors coupled with the tet regulatory elements also revealed doxycycline-dependent inducible GFP expression in the chicken embryo in ovo.


Asunto(s)
Virus del Sarcoma Aviar/genética , Regulación de la Expresión Génica , Vectores Genéticos , Replicación Viral , Animales , Antibacterianos/farmacología , Virus del Sarcoma Aviar/fisiología , Embrión de Pollo , Citomegalovirus/genética , Doxiciclina/farmacología , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...