Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 534(7609): 680-3, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27357794

RESUMEN

Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.


Asunto(s)
Bosques , Fotosíntesis , Estaciones del Año , Luz Solar , Árboles/metabolismo , Árboles/efectos de la radiación , Atmósfera/química , Dióxido de Carbono/metabolismo , Respiración de la Célula/efectos de la radiación , Clima , Oscuridad , Fotosíntesis/efectos de la radiación , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Factores de Tiempo , Árboles/citología , Árboles/crecimiento & desarrollo , Agua/metabolismo
2.
Science ; 294(5547): 1688-91, 2001 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-11721047

RESUMEN

Net uptake of carbon dioxide (CO2) measured by eddy covariance in a 60- to 80-year-old forest averaged 2.0 +/- 0.4 megagrams of carbon per hectare per year during 1993 to 2000, with interannual variations exceeding 50%. Biometry indicated storage of 1.6 +/- 0.4 megagrams of carbon per hectare per year over 8 years, 60% in live biomass and the balance in coarse woody debris and soils, confirming eddy-covariance results. Weather and seasonal climate (e.g., variations in growing-season length or cloudiness) regulated seasonal and interannual fluctuations of carbon uptake. Legacies of prior disturbance and management, especially stand age and composition, controlled carbon uptake on the decadal time scale, implying that eastern forests could be managed for sequestration of carbon.


Asunto(s)
Atmósfera , Dióxido de Carbono/metabolismo , Ecosistema , Árboles/metabolismo , Algoritmos , Atmósfera/análisis , Biomasa , Biometría , Carbono/metabolismo , Clima , New England , Nitrógeno/análisis , Probabilidad , Estaciones del Año , Suelo/análisis , Factores de Tiempo , Árboles/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...