Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 58(22): 5924-5930, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31503907

RESUMEN

The temperature measurement of a drill bit during an implantology drilling process is proposed by using a fiber Bragg grating fitted inside the drill bit. Due to the rotational nature of the drilling process, a free-space fiber-optic rotary joint is used for interrogating the fiber Bragg grating. Due to mechanical clearances and interferometric noise induced at this rotary joint, signal integrity is strongly deteriorated and is not workable without adequate measures. These measures involve a proper fiber lensing and a signal processing in order to remove the interferometric noise. Finally, a heating measurement on an implantology drill bit is performed and discussed for drilling several holes on a pork jaw sample.

2.
Opt Express ; 24(19): 21729-43, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27661911

RESUMEN

Interferometric measurements beyond the coherence length of the laser are investigated theoretically and experimentally in this paper. Thanks to a high-bandwidth detection, high-speed digitizers and a fast digital signal processing, we have demonstrated that the limit of the coherence length can be overcome. Theoretically, the maximal measurable displacement is infinite provided that the sampling rate is sufficiently short to prevent any phase unwrapping error. We could verify experimentally this concept using a miniature interferometer prototype, based on a frequency stabilized vertical cavity surface emitting laser. Displacement measurements at optical path differences up to 36 m could be realized with a relative stability better than 0.1 ppm, although the coherence length estimated from the linewidth and frequency noise measurements do not exceed 6.6 m.

3.
Opt Express ; 24(8): 8054-65, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27137244

RESUMEN

This paper presents a Fabry-Perot fiber tip sensor based on an air-liquid filled cavity. The cavity is sealed off by a thin gold coated membrane of parylene C, between 300 and 350 nm, creating a particularly flexible diaphragm. In order to retrieve and track the cavity of interest from other cavities formed within the sensor tip, a signal processing of the feedback signal is performed by inverse fast Fourier transform. The experimental sensor has been manufactured and tested for temperature, giving cavity length sensitivities of 6.1 nm/°C and 9.6 nm/°C for temperature increase and decrease respectively. The external gas pressure response gives a sensitivity of 15 nm/kPa. The fiber sensor has also been adapted for force sensing after silicone embedment and has shown a sensitivity of about 8.7 nm/mN. Finally, the sensor has been tested on insertion into a human temporal bone, proving that it could be an interesting candidate for insertion force monitoring for robotic cochlear implantation.

4.
Appl Opt ; 49(4): 714-7, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20119024

RESUMEN

We present a new superheterodyne technique for long-distance measurements by two-wavelength interferometry (TWI). While conventional systems use two acousto-optic modulators to generate two different heterodyne frequencies, here the two frequencies result from synchronized sweeps of optical and radio frequencies. A distributed feedback laser source is injected in an intensity modulator that is driven at the half-wave voltage mode. A radio-frequency signal is applied to this intensity modulator to generate two optical sidebands around the optical carrier. This applied radio frequency consists of a digital ramp between 13 and 15 GHz, with 1 ms duration and with an accuracy of better than 1 ppm. Simultaneously, the laser source is frequency modulated by a current modulation that is synchronized on the radio-frequency ramp as well as on a triangle waveform. These two frequency-swept optical signals at the output of the modulator illuminate a Michelson interferometer and create two distinct distance-dependent heterodyne frequencies on the photodetector. The superheterodyne signal is then detected and bandpass filtered to retrieve the absolute distance measurement. Experiments between 1 and 15 m confirm the validity of this new concept, leading to a distance accuracy of +/- 50 microm for a 1 ms acquisition time.

5.
Appl Opt ; 47(16): 3027-31, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18516123

RESUMEN

We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10(-7) or better, resulting in a resolution of +/-25 microm for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented.

6.
Appl Opt ; 47(14): 2715-20, 2008 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-18470268

RESUMEN

We propose a new approach to multiple-wavelength interferometry, targeted to high bandwidth absolute distance measurement, with nanometer accuracy over long distances. Two cw lasers are stabilized over a wide range of frequency intervals defined by an optical frequency comb, thus offering an unprecedented large choice of synthetic wavelengths. By applying a superheterodyne detection technique, we demonstrated experimentally an accuracy of 8 nm over 800 mm for target velocities up to 50 mm/s.

7.
Opt Lett ; 31(21): 3101-3, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17041648

RESUMEN

We propose a new tunable laser source concept for multiple-wavelength interferometry, offering an unprecedented large choice of synthetic wavelengths with a relative uncertainty better than 10(-11) in vacuum. Two lasers are frequency stabilized over a wide range of frequency intervals defined by the frequency comb generated by a mode-locked fiber laser. In addition, we present experimental results demonstrating the generation of a 90 mum synthetic wavelength calibrated with an accuracy better than 0.2 parts in 10(6). With this synthetic wavelength we can resolve one optical wavelength, which opens the way to absolute distance measurement with nanometer accuracy.

8.
Opt Lett ; 27(16): 1424-6, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18026467

RESUMEN

Interferometers with long optical paths in air usually require knowledge and control of air dispersion. In addition, the measurements at several wavelengths and the dispersion properties of air allow errors caused by air turbulence to be compensated for. An innovative technique for air-dispersion measurement is described for long-baseline ground-based stellar interferometers. The technique combines second-harmonic interferometry and heterodyne detection to permit high-resolution measurement even for low optical powers. Experimental results show measurements of air dispersion in good agreement with the values predicted from the Edlén equation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA