Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Brain Commun ; 6(4): fcae215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38961873

RESUMEN

The neuropathological mechanism underlying presbycusis remains unclear. This study aimed to illustrate the mechanism of neurovascular coupling associated with cognitive impairment in patients with presbycusis. We assessed the coupling of cerebral blood perfusion with spontaneous neuronal activity by calculating the correlation coefficients between cerebral blood flow and blood oxygen level-dependent-derived quantitative maps (amplitude of low-frequency fluctuation, fractional amplitude of low-frequency fluctuation, regional homogeneity, degree centrality). Four neurovascular coupling metrics (cerebral blood flow-amplitude of low-frequency fluctuation, cerebral blood flow-fractional amplitude of low-frequency fluctuation, cerebral blood flow-regional homogeneity and cerebral blood flow-degree centrality) were compared at the global and regional levels between the presbycusis group and the healthy control group, and the intrinsic association between the altered neurovascular coupling metrics and the neuropsychological scale was further analysed in the presbycusis group. At the global level, neurovascular coupling was significantly lower in the presbycusis group than in the control group and partially related to cognitive level. At the regional level, neurovascular biomarkers were significantly elevated in three brain regions and significantly decreased in one brain region, all of which involved the Papez circuit. Regional neurovascular coupling provides more information than global neurovascular coupling, and neurovascular coupling dysfunction within the Papez circuit has been shown to reveal the causes of poor cognitive and emotional responses in age-related hearing loss patients.

2.
Sci Rep ; 14(1): 15296, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961203

RESUMEN

Blast wave exposure, a leading cause of hearing loss and balance dysfunction among military personnel, arises primarily from direct mechanical damage to the mechanosensory hair cells and supporting structures or indirectly through excessive oxidative stress. We previously reported that HK-2, an orally active, multifunctional redox modulator (MFRM), was highly effective in reducing both hearing loss and hair cells loss in rats exposed to a moderate intensity workday noise that likely damages the cochlea primarily from oxidative stress versus direct mechanical trauma. To determine if HK-2 could also protect cochlear and vestibular cells from damage caused primarily from direct blast-induced mechanical trauma versus oxidative stress, we exposed rats to six blasts of 186 dB peak SPL. The rats were divided into four groups: (B) blast alone, (BEP) blast plus earplugs, (BHK-2) blast plus HK-2 and (BEPHK-2) blast plus earplugs plus HK-2. HK-2 was orally administered at 50 mg/kg/d from 7-days before to 30-day after the blast exposure. Cochlear and vestibular tissues were harvested 60-d post-exposure and evaluated for loss of outer hair cells (OHC), inner hair cells (IHC), auditory nerve fibers (ANF), spiral ganglion neurons (SGN) and vestibular hair cells in the saccule, utricle and semicircular canals. In the untreated blast-exposed group (B), massive losses occurred to OHC, IHC, ANF, SGN and only the vestibular hair cells in the striola region of the saccule. In contrast, rats treated with HK-2 (BHK-2) sustained significantly less OHC (67%) and IHC (57%) loss compared to the B group. OHC and IHC losses were smallest in the BEPHK-2 group, but not significantly different from the BEP group indicating lack of protective synergy between EP and HK-2. There was no loss of ANF, SGN or saccular hair cells in the BHK-2, BEP and BEPHK-2 groups. Thus, HK-2 not only significantly reduced OHC and IHC damage, but completely prevented loss of ANF, SGN and saccule hair cells. The powerful protective effects of this oral MFRM make HK-2 an extremely promising candidate for human clinical trials.


Asunto(s)
Traumatismos por Explosión , Células Ciliadas Vestibulares , Ganglio Espiral de la Cóclea , Animales , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ganglio Espiral de la Cóclea/patología , Ratas , Traumatismos por Explosión/prevención & control , Células Ciliadas Vestibulares/efectos de los fármacos , Células Ciliadas Vestibulares/metabolismo , Masculino , Oxidación-Reducción , Ratas Sprague-Dawley , Cóclea/efectos de los fármacos , Cóclea/patología , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Estrés Oxidativo/efectos de los fármacos , Pérdida Auditiva Provocada por Ruido/prevención & control , Pérdida Auditiva Provocada por Ruido/patología
3.
Front Neurosci ; 18: 1402039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933814

RESUMEN

Purpose: Sensorineural hearing loss (SNHL) is the most common form of sensory deprivation and is often unrecognized by patients, inducing not only auditory but also nonauditory symptoms. Data-driven classifier modeling with the combination of neural static and dynamic imaging features could be effectively used to classify SNHL individuals and healthy controls (HCs). Methods: We conducted hearing evaluation, neurological scale tests and resting-state MRI on 110 SNHL patients and 106 HCs. A total of 1,267 static and dynamic imaging characteristics were extracted from MRI data, and three methods of feature selection were computed, including the Spearman rank correlation test, least absolute shrinkage and selection operator (LASSO) and t test as well as LASSO. Linear, polynomial, radial basis functional kernel (RBF) and sigmoid support vector machine (SVM) models were chosen as the classifiers with fivefold cross-validation. The receiver operating characteristic curve, area under the curve (AUC), sensitivity, specificity and accuracy were calculated for each model. Results: SNHL subjects had higher hearing thresholds in each frequency, as well as worse performance in cognitive and emotional evaluations, than HCs. After comparison, the selected brain regions using LASSO based on static and dynamic features were consistent with the between-group analysis, including auditory and nonauditory areas. The subsequent AUCs of the four SVM models (linear, polynomial, RBF and sigmoid) were as follows: 0.8075, 0.7340, 0.8462 and 0.8562. The RBF and sigmoid SVM had relatively higher accuracy, sensitivity and specificity. Conclusion: Our research raised attention to static and dynamic alterations underlying hearing deprivation. Machine learning-based models may provide several useful biomarkers for the classification and diagnosis of SNHL.

4.
J Magn Reson Imaging ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777575

RESUMEN

BACKGROUND: Neonates with immature auditory function (eg, weak/absent middle ear muscle reflex) could conceivably be vulnerable to noise-induced hearing loss; however, it is unclear if neonates show evidence of hearing loss following MRI acoustic noise exposure. PURPOSE: To explore the auditory effects of MRI acoustic noise in neonates. STUDY TYPE: Prospective. SUBJECTS: Two independent cohorts of neonates (N = 19 and N = 18; mean gestational-age, 38.75 ± 2.18 and 39.01 ± 1.83 weeks). FIELD STRENGTH/SEQUENCE: T1-weighted three-dimensional gradient-echo sequence, T2-weighted fast spin-echo sequence, single-shot echo-planar imaging-based diffusion-tensor imaging, single-shot echo-planar imaging-based diffusion-kurtosis imaging and T2-weighted fluid-attenuated inversion recovery sequence at 3.0 T. ASSESSMENT: All neonates wore ear protection during scan protocols lasted ~40 minutes. Equivalent sound pressure levels (SPLs) were measured for both cohorts. In cohort1, left- and right-ear auditory brainstem response (ABR) was measured before (baseline) and after (follow-up) MRI, included assessment of ABR threshold, wave I, III and V latencies and interpeak interval to determine the functional status of auditory nerve and brainstem. In cohort2, baseline and follow-up left- and right-ear distortion product otoacoustic emission (DPOAE) amplitudes were assessed at 1.2 to 7.0 kHz to determine cochlear function. STATISTICAL TEST: Wilcoxon signed-rank or paired t-tests with Bonferroni's correction were used to compare the differences between baseline and follow-up ABR and DPOAE measures. RESULTS: Equivalent SPLs ranged from 103.5 to 113.6 dBA. No significant differences between baseline and follow-up were detected in left- or right-ear ABR measures (P > 0.999, Bonferroni corrected) in cohort1, or in DPOAE levels at 1.2 to 7.0 kHz in cohort2 (all P > 0.999 Bonferroni corrected except for left-ear levels at 3.5 and 7.0 kHz with corrected P = 0.138 and P = 0.533). DATA CONCLUSION: A single 40-minute 3-T MRI with equivalent SPLs of 103.5-113.6 dBA did not result in significant transient disruption of auditory function, as measured by ABR and DPOAE, in neonates with adequate hearing protection. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 5.

5.
Neuroimage ; 284: 120475, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38013009

RESUMEN

Age-related hearing loss (ARHL), one of the most common sensory deficits in elderly individuals, is a risk factor for dementia; however, it is unclear how ARHL affects the decline in cognitive function. To address this issue, a connectome gradient framework was used to identify critical features of information integration between sensory and cognitive processing centers using resting-state functional magnetic resonance imaging (rs-fMRI) data from 40 individuals with ARHL and 36 healthy controls (HCs). The first three functional gradient alterations associated with ARHL were investigated at the global, network and regional levels. Using a support vector machine (SVM) model, our analysis distinguished individuals with ARHL with normal cognitive function from those with cognitive decline. Compared to HCs, individuals with ARHL had a contracted principal primary-to-transmodal gradient axis, especially in the visual and default mode networks, with an altered gradient explained ratio and variance. Among individuals with ARHL, cognitive decline was detected in the visual network in the principal gradient as well as in the limbic, salience and default mode networks in the third gradient (salience to frontoparietal/default mode). These results suggest that ARHL is associated with disrupted information processing from the primary sensory networks to higher-order cognitive networks and highlight the key nodes closely associated with cognitive decline during cognitive processing in ARHL, providing new insights into the mechanism of cognitive impairment and suggesting potential treatments related to ARHL.


Asunto(s)
Disfunción Cognitiva , Conectoma , Presbiacusia , Humanos , Anciano , Conectoma/métodos , Cognición , Factores de Riesgo , Imagen por Resonancia Magnética/métodos
6.
Hear Res ; 431: 108726, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36905854

RESUMEN

Hyperacusis, a debilitating loudness intolerance disorder, has been linked to chronic stress and adrenal insufficiency. To investigate the role of chronic stress, rats were chronically treated with corticosterone (CORT) stress hormone. Chronic CORT produced behavioral evidence of loudness hyperacusis, sound avoidance hyperacusis, and abnormal temporal integration of loudness. CORT treatment did not disrupt cochlear or brainstem function as reflected by normal distortion product otoacoustic emissions, compound action potentials, acoustic startle reflexex, and auditory brainstem responses. In contrast, the evoked response from the auditory cortex was enhanced up to three fold after CORT treatment. This hyperactivity was associated with a significant increase in glucocorticoid receptors in auditory cortex layers II/III and VI. Basal serum CORT levels remained normal after chronic CORT stress whereas reactive serum CORT levels evoked by acute restraint stress were blunted (reduced) after chronic CORT stress; similar changes were observed after chronic, intense noise stress. Taken together, our results show for the first time that chronic stress can induce hyperacusis and sound avoidance. A model is proposed in which chronic stress creates a subclinical state of adrenal insufficiency that establishes the necessary conditions for inducing hyperacusis.


Asunto(s)
Corteza Auditiva , Hiperacusia , Ratas , Animales , Estimulación Acústica/métodos , Ruido , Potenciales Evocados Auditivos del Tronco Encefálico
7.
Hear Res ; 428: 108684, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599258

RESUMEN

Hearing loss is the third most prevalent chronic health condition affecting older adults and age-related hearing loss (ARHL) is the most common form of hearing impairment. Significant sex differences in hearing have been documented in humans and rodents. In general, the results of these studies show that men lose their hearing more rapidly than women. However, the cellular mechanism underlying sex differences in hearing or hearing loss remains largely unknown, and to our knowledge, there is no well-established animal model for studying sex differences in hearing. In the current study, we examined sex differences in body composition, voluntary wheel running activity, balance performance, auditory function, and cochlear histology in young, middle-age, and old CBA/CaJ mice, a model of age-related hearing loss. As expected, body weight of young females was lower than that of males. Similarly, lean mass and total water mass of young, middle-age, and old females were lower than those of males. Young females showed higher voluntary wheel running activity during the dark cycle, an indicator of mobility, physical activity, and balance status, compared to males. Young females also displayed higher auditory brainstem response (ABR) wave I amplitudes at 8 kHz, wave II, III, V amplitudes at 8 and 48 kHz, and wave IV/I and V/I amplitude ratios at 48 kHz compared to males. Collectively, our findings suggest that the CBA/CaJ mouse strain is a useful model to study the cellular mechanisms underlying sex differences in physical activity and hearing.


Asunto(s)
Longevidad , Presbiacusia , Ratones , Persona de Mediana Edad , Animales , Femenino , Humanos , Masculino , Anciano , Envejecimiento/fisiología , Caracteres Sexuales , Actividad Motora , Umbral Auditivo/fisiología , Ratones Endogámicos CBA , Audición , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Composición Corporal
8.
CNS Neurosci Ther ; 29(3): 932-940, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36377461

RESUMEN

AIMS: This study aimed to explore the neural substrate of hearing loss-related central nervous system in rats and its correlation with cognition. METHODS: We identified the neural mechanism for these debilitating abnormalities by inducing a bilateral hearing loss animal model using intense broadband noise (122 dB of broadband noise for 2 h) and used the Morris water maze test to characterize the behavioral changes at 6 months post-noise exposure. Functional magnetic resonance imaging (fMRI) was conducted to clarify disrupted functional network using bilateral auditory cortex (ACx) as a seed. Structural diffusion tensor imaging (DTI) was applied to illustrate characteristics of fibers in ACx and hippocampus. Pearson correlation was computed behavioral tests and other features. RESULTS: A deficit in spatial learning/memory, body weight, and negative correlation between them was observed. Functional connectivity revealed weakened coupling within the ACx and inferior colliculus, lateral lemniscus, the primary motor cortex, the olfactory tubercle, hippocampus, and the paraflocculus lobe of the cerebellum. The fiber number and mean length of ACx and different hippocampal subregions were also damaged in hearing loss rats. CONCLUSION: A new model of auditory-limbic-cerebellum interactions accounting for noise-induced hearing loss and cognitive impairments is proposed.


Asunto(s)
Disfunción Cognitiva , Pérdida Auditiva Provocada por Ruido , Ratas , Animales , Pérdida Auditiva Provocada por Ruido/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Vías Auditivas , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Cerebelo
9.
Hear Res ; 428: 108667, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36566642

RESUMEN

The startle reflex (SR), a robust, motor response elicited by an intense auditory, visual, or somatosensory stimulus has been widely used as a tool to assess psychophysiology in humans and animals for almost a century in diverse fields such as schizophrenia, bipolar disorder, hearing loss, and tinnitus. Previously, SR waveforms have been ignored, or assessed with basic statistical techniques and/or simple template matching paradigms. This has led to considerable variability in SR studies from different laboratories, and species. In an effort to standardize SR assessment methods, we developed a machine learning algorithm and workflow to automatically classify SR waveforms in virtually any animal model including mice, rats, guinea pigs, and gerbils obtained with various paradigms and modalities from several laboratories. The universal features common to SR waveforms of various species and paradigms are examined and discussed in the context of each animal model. The procedure describes common results using the SR across species and how to fully implement the open-source R implementation. Since SR is widely used to investigate toxicological or pharmaceutical efficacy, a detailed and universal SR waveform classification protocol should be developed to aid in standardizing SR assessment procedures across different laboratories and species. This machine learning-based method will improve data reliability and translatability between labs that use the startle reflex paradigm.


Asunto(s)
Reflejo de Sobresalto , Acúfeno , Humanos , Ratas , Ratones , Animales , Cobayas , Reflejo de Sobresalto/fisiología , Estimulación Acústica/métodos , Reproducibilidad de los Resultados , Modelos Animales de Enfermedad , Gerbillinae
10.
PLoS Genet ; 18(11): e1010477, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350884

RESUMEN

Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in MpzT124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along MpzT124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the MpzT124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Humanos , Ratones , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Axones/metabolismo , Neuroglía , Ratones Noqueados , Modelos Animales de Enfermedad , Comunicación
11.
Hear Res ; 426: 108648, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36395696

RESUMEN

Hyperacusis is a debilitating loudness intolerance disorder that can evoke annoyance, fear and aural facial pain. Although the auditory system seems to be the "central" player, hyperacusis is linked to more than twenty non-auditory medical disorders such as Williams syndrome, autism spectrum disorder, fibromyalgia, migraine, head trauma, lupus and acoustic shock syndrome. Neural models suggest that some forms of hyperacusis may result from enhanced central gain, a process by which neural signals from a damaged cochlea are progressively amplified as activity ascends rostrally through the classical auditory pathway as well as other non-auditory regions of the brain involved in emotions, memory and stress. Imaging studies have begun to reveal the extended neural networks and patterns of functional connectivity in the brain that enrich sounds with negative attributes that can make listening unbearable and even painful. The development of animal models of hyperacusis have enabled researcher to begin to critically evaluate the biological bases of hyperacusis, identify therapies to ameliorate the symptoms and gain a better understanding of the neural mechanisms involved in loudness coding in normal and hearing impaired subjects.


Asunto(s)
Trastorno del Espectro Autista , Hiperacusia , Animales , Miedo , Dolor , Emociones
12.
Brain Imaging Behav ; 16(6): 2725-2734, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36327020

RESUMEN

Presbycusis is a major public issue that affecting elderly adults. However, the neural substrates between normal cognition and cognitive deficits in these patients need to be illustrated. 47 patients with presbycusis and 33 well-matched healthy controls were recruited in present study. Each subject underwent pure-tone audiometry (PTA), MRI scanning and cognition evaluations, then we found 22 patients with cognitive deficits and 25 patients with common cognition. We analyzed the Degree centrality (DC) characteristics among three groups, and try to recognize key nodes which contribute significantly. Subsequent functional connectivity analysis was applied using the key nodes as seeds. Compared with controls, presbycusis without cognitive impairments showed deceased DC in superior temporal gyrus (STG), inferior frontal gyrus (IFG) and supramarginal gyrus (SMG). Additionally, presbycusis with cognitive impairments showed enhanced DC in fusiform gurus (FFG), cerebellum and para-hippocampal gyrus (PHG), while weakened DC in SMG, middle frontal gyrus (IFG) and inferior Parietal lobule (IPL). Compared with normal cognition, increased DC value of cerebellum and STG, as well as decreased DC value of IPL in presbycusis with cognitive impairments were observed. We noticed that SMG may play an important role. Then the left and right SMG were used as seeds in functional connections analysis. With the seed set at left SMG, presbycusis without cognitive impairments showed decreases connections with cerebellum, temporal pole (TP), superior temporal gyrus (STG) and median cingulate cortex (MCC). Presbycusis with cognitive impairments showed weakened connectivity with cerebellum, IFG, IPL and superior frontal gyrus (SFG). The right SMG showed decrease connections with cerebellum, middle temporal gyrus (MTG), STG and increase connection with middle frontal gyrus (MFG) in presbycusis without cognitive impairments. While the right SMG showed enhanced connections with left TP, caudate, anterior cingulate cortex (ACC), angular, SFG and weakened connectivity with right SFG presbycusis with cognitive impairments. In comparison with normal cognition and impaired cognition, MFG, IFG, PHG, rolandic operculum and cerebellum were involved. These findings enriched our understanding of the neural mechanisms underlying cognitive impairments associated with presbycusis and may serve as a potential imaging biomarker for investigating and predicting cognitive difficulties.


Asunto(s)
Disfunción Cognitiva , Presbiacusia , Adulto , Humanos , Anciano , Imagen por Resonancia Magnética/métodos , Encéfalo , Presbiacusia/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Lóbulo Parietal
13.
Hear Res ; 424: 108602, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36103788

RESUMEN

Sex differences in the development of sensorineural hearing loss have been recognized in various inner ear disorders, but the molecular basis for such differences is poorly understood. Autosomal genes have been shown to cause sex differences in disease susceptibility, but many genes exerting sex-dependent effects on auditory function remain to be identified. Galectin-3 (Gal-3), a protein encoded by the autosomal gene Lgals3, is a member of the ß-galactoside-binding protein family, and has been linked to multiple biological processes, including immune responses, apoptosis, and cell adhesion. Here, we investigated auditory function and hair cell integrity in Gal-3 knockout (KO, Lgals3-/-) and wild-type (WT, Lgals3+/+) mice from age 1 to 6 months. KO mice show a more rapid age-related increase in ABR thresholds compared to WT mice. Noticeably, the threshold deterioration in female KO mice is significantly greater than in the male KO and WT mice. The ABR threshold elevation manifests over a broad frequency range in female KO mice, whereas the threshold elevations are confined to high frequencies in the male KO and WT mice. Moreover, DPOAE input/output functions reveal a similar pattern of auditory dysfunction, with the female KO mice displaying a significantly greater reduction in DPOAE amplitudes than male KO mice and WT mice of both sexes. Finally, age-related outer hair cell loss is greater for female KO mice compared to male KO mice and WT mice of both sexes. Together, these results indicate that Gal-3 deficiency exacerbates age-related cochlear degeneration and auditory dysfunction in female mice. Our study identifies Gal-3 as a sex-dependent molecule for maintaining female cochlear integrity.


Asunto(s)
Galectina 3 , Audición , Animales , Umbral Auditivo/fisiología , Cóclea , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Galectina 3/genética , Galectina 3/metabolismo , Células Ciliadas Auditivas Externas/fisiología , Masculino , Ratones , Ratones Noqueados
14.
Front Genet ; 13: 936128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991545

RESUMEN

Hearing impairment is a cardinal feature of Down syndrome (DS), but its clinical manifestations have been attributed to multiple factors. Murine models could provide mechanistic insights on various causes of hearing loss in DS. To investigate mechanisms of hearing loss in DS in the absence of the cadherin 23 mutation, we backcrossed our DS mice, Dp(16)1Yey, onto normal-hearing CBA/J mice and evaluated their auditory function. Body weights of wild type (WT) and DS mice were similar at 3-months of age, but at 9-months, WT weighed 30% more than DS mice. Distortion product otoacoustic emissions (DPOAE), a test of sensory outer hair cell (OHC) function negatively impacted by conductive hearing loss, were reduced in amplitude and sensitivity across all frequencies in DS mice. The middle ear space in DS mice appeared normal with no evidence of infection. MicroCT structural imaging of DS temporal bones revealed a smaller tympanic membrane diameter, oval window, and middle ear space and localized thickening of the bony otic capsule, but no gross abnormalities of the middle ear ossicles. Histological analysis of the cochlear and vestibular sensory epithelium revealed a normal density of cochlear and vestibular hair cells; however, the cochlear basal membrane was approximately 0.6 mm shorter in DS than WT mice so that the total number of hair cells was greater in WT than DS mice. In DS mice, the early and late peaks in the auditory brainstem response (ABR), reflecting neural responses from the cochlear auditory nerve followed by subsequent neural centers in the brainstem, were reduced in amplitude and ABR thresholds were elevated to a similar degree across all frequencies, consistent with a conductive hearing impairment. The latency of the peaks in the ABR waveform were longer in DS than WT mice when compared at the same intensity; however, the latency delays disappeared when the data were compared at the same intensity above thresholds to compensate for the conductive hearing loss. Future studies using wideband tympanometry and absorbance together with detailed histological analysis of the middle ear could illuminate the nature of the conductive hearing impairment in DS mice.

15.
Hear Res ; 422: 108567, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35816891

RESUMEN

BACKGROUND: While ear stimulation produces a robust response in the contralateral auditory cortex (AC), it produces only a weak response in the ipsilateral AC, known as interhemispheric asymmetry. Unilateral deafness can lead to AC plastic changes, resulting in reduced interhemispheric asymmetry and auditory perceptual consequences. However, the unilateral hearing loss-associated plastic changes are far from fully understood. The purpose of this study was to investigate AC responses to the ipsilateral unimpaired ear after noise injury to the contralateral ear in juvenile rats. METHODS: Rats (50 days) were monaurally exposed to an intense noise (10.0-12.5 kHz, 126 dB SPL) for 2 hours. The unexposed ear-induced ipsilateral AC responses were recorded 2 days and 4 months after exposure and compared between groups. RESULTS: The noise exposure resulted in complete hearing loss in the exposed ear, but normal function in the other. Two days after exposure, the ipsilateral AC response induced by the intact ear was significantly enhanced and the threshold decreased (the early-onset effect). Four months after noise exposure, in addition to the increased response amplitude, the "slow-increasing" firing pattern of the neurons in the ipsilateral AC turned into the contralateral-AC-response-like "sharp-increasing" pattern (the late-onset effect) with shortened response latency. DISCUSSION: The early-onset effect can result from release of inhibition due to decreased contralateral input, while the late-onset effect may imply the formation of direct connections in the ipsilateral auditory pathway. The enhanced AC response may help maintain loudness perception and monaural sound localization after unilateral deafness.


Asunto(s)
Corteza Auditiva , Sordera , Pérdida Auditiva Unilateral , Ratas , Animales , Corteza Auditiva/fisiología , Pérdida Auditiva Unilateral/etiología , Ruido/efectos adversos , Vías Auditivas/fisiología , Estimulación Acústica/métodos
16.
CNS Neurosci Ther ; 28(10): 1547-1556, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35726754

RESUMEN

AIMS: We aimed to find where and how noise-induced cochlear hearing loss affects the central nervous system during the early state and identify the neural substrate for aberrant patterns that mediating noise-related anxiety-/depression- like behaviors. METHODS: Broad band noise with 122 dB for 2 hours was conducted to induce hearing loss. We defined 0 day (N0D) and 10 days (N10D) post noise as the acute and sub-acute period. Behavioral tests (Open field test and light/dark test) and resting-state fMRI were computed to evaluate emotional conditions and aberrant neural activity. Functional connectivity analysis using the anterior cingulate cortex as a seed was computed to reveal the spatial distribution beyond auditory network during both periods. RESULTS: Anxiety-/depression-like behaviors were found in rats with noise exposure. Between-group analysis revealed that N0D rats displayed widespread reductions in functional connectivity, spanning primary somatosensory cortex, medial geniculate body, inferior colliculus, cingulate cortex, cerebellar lobule comparing with N10D rats and a similar pattern was also occurred in comparison with the control group. CONCLUSION: Taken together, an "acoustic-causing" network accounting for distress and gating of noise exposure related anxiety/depression was proposed.


Asunto(s)
Giro del Cíngulo , Imagen por Resonancia Magnética , Animales , Cerebelo , Giro del Cíngulo/diagnóstico por imagen , Ratas
17.
Front Integr Neurosci ; 16: 871223, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619926

RESUMEN

Noise-induced hearing loss (NIHL), caused by direct damage to the cochlea, reduces the flow of auditory information to the central nervous system, depriving higher order structures, such as the hippocampus with vital sensory information needed to carry out complex, higher order functions. Although the hippocampus lies outside the classical auditory pathway, it nevertheless receives acoustic information that influence its activity. Here we review recent results that illustrate how NIHL and other types of cochlear hearing loss disrupt hippocampal function. The hippocampus, which continues to generate new neurons (neurogenesis) in adulthood, plays an important role in spatial navigation, memory, and emotion. The hippocampus, which contains place cells that respond when a subject enters a specific location in the environment, integrates information from multiple sensory systems, including the auditory system, to develop cognitive spatial maps to aid in navigation. Acute exposure to intense noise disrupts the place-specific firing patterns of hippocampal neurons, "spatially disorienting" the cells for days. More traumatic sound exposures that result in permanent NIHL chronically suppresses cell proliferation and neurogenesis in the hippocampus; these structural changes are associated with long-term spatial memory deficits. Hippocampal neurons, which contain numerous glucocorticoid hormone receptors, are part of a complex feedback network connected to the hypothalamic-pituitary (HPA) axis. Chronic exposure to intense intermittent noise results in prolonged stress which can cause a persistent increase in corticosterone, a rodent stress hormone known to suppress neurogenesis. In contrast, a single intense noise exposure sufficient to cause permanent hearing loss produces only a transient increase in corticosterone hormone. Although basal corticosterone levels return to normal after the noise exposure, glucocorticoid receptors (GRs) in the hippocampus remain chronically elevated. Thus, NIHL disrupts negative feedback from the hippocampus to the HPA axis which regulates the release of corticosterone. Preclinical studies suggest that the noise-induced changes in hippocampal place cells, neurogenesis, spatial memory, and glucocorticoid receptors may be ameliorated by therapeutic interventions that reduce oxidative stress and inflammation. These experimental results may provide new insights on why hearing loss is a risk factor for cognitive decline and suggest methods for preventing this decline.

18.
Brain Imaging Behav ; 16(4): 1884-1892, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35543862

RESUMEN

This study aimed to investigate the alterations of cognition and functional connectivity post noise, and find the progress and neural substrates of noise induced hearing loss (NIHL)-associated cognitive impairment. We exposed rats to 122 dB broad-band noise for 2 h to induce hearing loss and the auditory function was assessed by measuring auditory brainstem response thresholds. Morris water maze test and resting state MRI were computed at 0 day, 1, 3, 6 months post noise to reveal cognitive ability and neural substrate. The interregional connections in the auditory network and default mode network, as well as the connections using the auditory cortex and cingulate cortex as seeds were also examined addtionally. The deficit in spatial learning/memory was only observed at 6 months after noise exposure. The internal connections in the auditory network and default mode network were enhanced at 0 day and decreased at 6 months post noise. The connectivity using the auditory cortex and cingulate cortex as seeds generally followed the rule of "enhancement-normal-decrease-widely decrease". A new model accounting for arousal, dementia, motor control of NIHL in is proposed. Our study highlights the fundamental flexibility of neural systems, and may also point toward novel therapeutic strategies for treating sensory disorders.


Asunto(s)
Corteza Auditiva , Pérdida Auditiva Provocada por Ruido , Animales , Corteza Auditiva/diagnóstico por imagen , Cognición , Imagen por Resonancia Magnética , Ruido/efectos adversos , Ratas
19.
EBioMedicine ; 76: 103862, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35104784

RESUMEN

BACKGROUND: The aberrant brain network that gives rise to the phantom sound of tinnitus is believed to determine the effectiveness of tinnitus therapies involving neuromodulation with repetitive transcranial magnetic stimulation (rTMS) and sound therapy utilizing tailor-made notch music training (TMNMT). To test this hypothesis, we determined how effective rTMS or TMNMT were in ameliorating tinnitus in patients with different functional brain networks. METHODS: Resting-state functional MRI was used to construct brain functional networks in patients with tinnitus (41 males/45 females, mean age 49.53±11.19 years) and gender-matched healthy controls (22 males/35 females, mean age 46.23±10.23 years) with independent component analysis (ICA). A 2 × 2 analysis of variance with treatment outcomes (Effective group, EG/Ineffective group, IG) and treatment types (rTMS/TMNMT) was used to test the interaction between outcomes and treatment types associated with functional network connections (FNCs). FINDINGS: The optimal neuroimaging indicator for responding to rTMS (AUC 0.804, sensitivity 0.700, specificity 0.913) was FNCs in the salience network-right frontoparietal network (SN-RFPN) while for responding to TMNMT (AUC 0.764, sensitivity 0.864, specificity 0.667) was the combination of FNCs in the auditory network- salience network (AUN-SN) and auditory network-cerebellar network (AUN-CN). INTERPRETATION: Tinnitus patients with higher FNCs in the SN-RFPN is associated with a recommendation for rTMS whereas patients with lower FNCs in the AUN-SN and AUN-CN would suggest TMNMT as the better choice. These results indicate that brain network-based measures aid in the selection of the optimal form of treatment for a patient contributing to advances in precision medicine. FUNDING: Yuexin Cai is supported by Key R&D Program of Guangdong Province, China (Grant No. 2018B030339001), National Natural Science Foundation of China (82071062), Natural Science Foundation of Guangdong province (2021A1515012038), the Fundamental Research Funds for the Central Universities (20ykpy91), and Sun Yat-Sen Clinical Research Cultivating Program (SYS-Q-201903). Yu-Chen Chen is supported by Medical Science and Technology Development Foundation of Nanjing Department of Health (No. ZKX20037), and Natural Science Foundation of Jiangsu Province (No. BK20211008).


Asunto(s)
Corteza Auditiva , Acúfeno , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Acúfeno/diagnóstico por imagen , Acúfeno/terapia , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento
20.
Hear Res ; 415: 108441, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35065507

RESUMEN

The acoustic startle reflex (ASR) amplitude can be enhanced or suppressed by noise-induced hearing loss or age-related hearing loss; however, little is known about how the ASR changes when ototoxic drugs destroy outer hair cells (OHCs) and inner hair cells (IHCs). High doses of 2-hydroxypropyl-beta-cyclodextrin (HPßCD), a cholesterol-lowering drug used to treat Niemann-Pick Type disease type C1, initially destroy OHCs and then the IHCs 6-8 weeks later. Adult rats were treated with doses of HPßCD designed to produce a diversity of hair cell lesions and hearing losses. When HPßCD destroyed OHCs and IHCs in the extreme base of the cochlea and caused minimal high-frequency hearing loss, the ASR amplitudes were enhanced at 4-, 8- and 16 kHz. Enhanced ASR occurred during the first few weeks post-treatment when only OHCs were missing; little change in the ASR occurred 6-8-WK post-treatment. If HPßCD destroyed most OHCs and many IHCs in the basal half of the cochlea, high-frequency thresholds increased ∼50 dB, and ASR amplitudes were reduced ∼50% at 4-, 8- and 16-kHz. The ASR amplitude reduction occurred in the first few weeks post-treatment when the OHCs were degenerating. The ASR was largely abolished when most of the OHCs were missing over the basal two-thirds of the cochlea and a 40-50 dB hearing loss was present at most frequencies. These results indicate that high-doses of HPßCD generally lead to a decline in ASR amplitude as OHCs degenerate; however, ASR amplitudes were enhanced in a few cases when hair cell loss was confined to the extreme base of the cochlea.


Asunto(s)
Ciclodextrinas , Presbiacusia , Animales , Cóclea/patología , Células Ciliadas Auditivas Internas/patología , Células Ciliadas Auditivas Externas/patología , Presbiacusia/patología , Ratas , Reflejo de Sobresalto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...