Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vavilovskii Zhurnal Genet Selektsii ; 28(2): 215-227, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38680178

RESUMEN

Advances in modern healthcare in developed countries make it possible to extend the human lifespan, which is why maintaining active longevity is becoming increasingly important. After the sirtuin (SIRT) protein family was discovered, it started to be considered as a significant regulator of the physiological processes associated with aging. SIRT has deacetylase, deacylase, and ADP-ribosyltransferase activity and modifies a variety of protein substrates, including chromatin components and regulatory proteins. This multifactorial regulatory system affects many processes: cellular metabolism, mitochondrial functions, epigenetic regulation, DNA repair and more. As is expected, the activity of sirtuin proteins affects the manifestation of classic signs of aging in the body, such as cellular senescence, metabolic disorders, mitochondrial dysfunction, genomic instability, and the disruption of epigenetic regulation. Changes in the SIRT activity in human cells can also be considered a marker of aging and are involved in the genesis of various age-dependent disorders. Additionally, experimental data obtained in animal models, as well as data from population genomic studies, suggest a SIRT effect on life expectancy. At the same time, the diversity of sirtuin functions and biochemical substrates makes it extremely complicated to identify cause-and-effect relationships and the direct role of SIRT in controlling the functional state of the body. However, the SIRT influence on the epigenetic regulation of gene expression during the aging process and the development of disorders is one of the most important aspects of maintaining the homeostasis of organs and tissues. The presented review centers on the diversity of SIRT in humans and model animals. In addition to a brief description of the main SIRT enzymatic and biological activity, the review discusses its role in the epigenetic regulation of chromatin structure, including the context of the development of genome instability associated with aging. Studies on the functional connection between SIRT and longevity, as well as its effect on pathological processes associated with aging, such as chronic inflammation, fibrosis, and neuroinflammation, have been critically analyzed.

2.
Mol Biol (Mosk) ; 55(5): 707-733, 2021.
Artículo en Ruso | MEDLINE | ID: mdl-34671001

RESUMEN

Direct reprogramming technology allows several specific types of cells, including specialized neurons, to be obtained from readily available autologous somatic cells. It presents unique opportunities for the development of personalized medicine, from in vitro models of hereditary and degenerative neurological diseases to novel neuroregenerative technologies. Over the past decade, a plethora of protocols for primary reprogramming has been published, yet reproducible generation of homogeneous populations of neuronally reprogrammed cells still remains a challenge. All existing protocols, however, use transcription factors that are involved in embryonic neurogenesis. This is presumably be the key issue for obtaining highly efficient and reproducible protocols for ex vivo neurogenesis. Analysis of the functional features of transcription factors in embryonic and adult neurogenesis may not only lead to the improvement of reprogramming protocols, but also, via cell marker analysis, can exactly determine the stage of neurogenesis that a particular protocol will reach. The purpose of this review is to characterize the general factors that play key roles in neurogenesis for the embryonic and adult periods, as well as in cellular reprogramming, and to assess correspondence of cell forms obtained as a result of cellular reprogramming to the ontogenetic series of the nervous system, from pluripotent stem cells to specialized neurons.


Asunto(s)
Reprogramación Celular , Factores de Transcripción , Reprogramación Celular/genética , Neuronas , Factores de Transcripción/genética
3.
Zh Nevrol Psikhiatr Im S S Korsakova ; 121(8. Vyp. 2): 11-21, 2021.
Artículo en Ruso | MEDLINE | ID: mdl-34553576

RESUMEN

The review systematizes data on the role of infectious diseases and systemic inflammation in the pathogenesis of stroke. Various risk factors for stroke associated with pro-inflammatory reactions and their contribution to the pathogenesis of cerebrovascular pathology are analyzed. The interaction of systemic inflammation with hemostasis disturbances and clots formation, activation of autoreactive clones of cytotoxic lymphocytes, the progression of endothelial damage, and other processes is shown. Along with infection, these factors increase the risk of stroke. The key mechanisms of the pathogenesis from the development of acute or chronic inflammation to the preconditions of stroke are presented. The mechanisms of the acting of the infectious process as a trigger factor and/or medium-term or long-term risk factors of stroke are described. A separate section is devoted to the mechanisms of developing cerebrovascular diseases after COVID-19. Identifying an increased risk of stroke due to infection can be of great preventive value. Understanding of this risk by specialists followed by correction of drug therapy and rehabilitation measures can reduce the incidence of cerebrovascular complications in infectious patients.


Asunto(s)
COVID-19 , Accidente Cerebrovascular , Humanos , Inflamación , Factores de Riesgo , SARS-CoV-2 , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología
4.
Bull Exp Biol Med ; 167(4): 546-555, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31502132

RESUMEN

In in vitro experiments on cultures of human multipotent stem cells from the human bonearrow and dental pulp, we studied direct reprogramming towards neuro-glial lineage cells using a cocktail of small molecules. Reprogramming by the previously published protocol (with a cocktail containing ß-mercaptoethanol, LIF, VPA, CHIR99021, and RepSox) and by the optimized protocol (VPA, RG108, А83-01, dorsomorphin, thiazovivin, CHIR99021, forskolin, and Isx9) allows obtaining cells with immunophenotypic and genetic signs of neural stem cells. However, neither the former, nor the optimized protocols allowed preparing neural progenitors capable of adequate terminal differentiation from both bone marrow-derived mesenchymal stem cells and nestin-positive neural crest-derived mesenchymal stem cells. Real-time PCR demonstrated the expression of some neurogenesis markers, but neural stem cell-specific expression pattern was not observed. The findings lead us to a conclusion that reprogramming with small molecules without additional factors modifying gene expression does not allow reproducible production of human neural stem cell-like progenitors that can be used as the source of neural tissue for the regenerative therapy.


Asunto(s)
Células-Madre Neurales/citología , Diferenciación Celular/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Humanos , Mercaptoetanol/farmacología , Células Madre Mesenquimatosas , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Pirazoles/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Sci Rep ; 9(1): 3161, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816182

RESUMEN

We have designed a novel two-component matrix (SPRPix) for the encapsulation of directly reprogrammed human neural precursor cells (drNPC). The matrix is comprised of 1) a solid anisotropic complex scaffold prepared by electrospinning a mixture of recombinant analogues of the spider dragline silk proteins - spidroin 1 (rS1/9) and spidroin 2 (rS2/12) - and polycaprolactone (PCL) (rSS-PCL), and 2) a "liquid matrix" based on platelet-rich plasma (PRP). The combination of PRP and spidroin promoted drNPC proliferation with the formation of neural tissue organoids and dramatically activated neurogenesis. Differentiation of drNPCs generated large numbers of ßIII-tubulin and MAP2 positive neurons as well as some GFAP-positive astrocytes, which likely had a neuronal supporting function. Interestingly the SPRPix microfibrils appeared to provide strong guidance cues as the differentiating neurons oriented their processes parallel to them. Implantation of the SPRPix matrix containing human drNPC into the brain and spinal cord of two healthy Rhesus macaque monkeys showed good biocompatibility: no astroglial and microglial reaction was present around the implanted construct. Importantly, the human drNPCs survived for the 3 month study period and differentiated into MAP2 positive neurons. Tissue engineered constructs based on SPRPix exhibits important attributes that warrant further examination in spinal cord injury treatment.


Asunto(s)
Fibroínas/farmacología , Neuronas/efectos de los fármacos , Traumatismos de la Médula Espinal/terapia , Animales , Astrocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Fibroínas/química , Fibroínas/genética , Humanos , Macaca mulatta , Regeneración Nerviosa/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Plasma Rico en Plaquetas/química , Poliésteres/química , Poliésteres/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/crecimiento & desarrollo , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
6.
Stem Cells Int ; 2018: 4835491, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760724

RESUMEN

Over many decades, constructing genetically and phenotypically stable lines of neural stem cells (NSC) for clinical purposes with the aim of restoring irreversibly lost functions of nervous tissue has been one of the major goals for multiple research groups. The unique ability of stem cells to maintain their own pluripotent state even in the adult body has made them into the choice object of study. With the development of the technology for induced pluripotent stem cells (iPSCs) and direct transdifferentiation of somatic cells into the desired cell type, the initial research approaches based on the use of allogeneic NSCs from embryonic or fetal nervous tissue are gradually becoming a thing of the past. This review deals with basic molecular mechanisms for maintaining the pluripotent state of embryonic/induced stem and reprogrammed somatic cells, as well as with currently existing reprogramming strategies. The focus is on performing direct reprogramming while bypassing the stage of iPSCs which is known for genetic instability and an increased risk of tumorigenesis. A detailed description of various protocols for obtaining reprogrammed neural cells used in the therapy of the nervous system pathology is also provided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...