Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 3338, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620901

RESUMEN

Quantum interference of currents is the most important and well known quantum phenomenon in a conventional superconducting quantum interference device (SQUID). Here, we report the observation of quantum interference of currents in an atomtronic SQUID. Analogous to a conventional SQUID, currents flowing through two junctions in an atomtronic SQUID interfere due to the phase difference from rotation. This interference results in modulation of critical currents. This modulation was observed for three different radii with clear modulation periods which were measured to be consistent with fundamental rotation rates. This observation shows the possibility of studying various interesting SQUID physics with an atomtronic SQUID and especially, macroscopic quantum phenomena with currents may be realized with an atomtronic SQUID toward the goal of quantum metrology of rotation sensing.

2.
Phys Rev Lett ; 111(23): 235301, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24476287

RESUMEN

Fluids subjected to suitable forcing will exhibit turbulence, with characteristics strongly affected by the fluid's physical properties and dimensionality. In this work, we explore two-dimensional (2D) quantum turbulence in an oblate Bose-Einstein condensate confined to an annular trapping potential. Experimentally, we find conditions for which small-scale stirring of the condensate generates disordered 2D vortex distributions that dissipatively evolve toward persistent currents, indicating energy transport from small to large length scales. Simulations of the experiment reveal spontaneous clustering of same-circulation vortices and an incompressible energy spectrum with k(-5/3) dependence for low wave numbers k. This work links experimentally observed vortex dynamics with signatures of 2D turbulence in a compressible superfluid.

3.
Phys Rev Lett ; 104(16): 160401, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20482029

RESUMEN

We report experimental observations and numerical simulations of the formation, dynamics, and lifetimes of single and multiply charged quantized vortex dipoles in highly oblate dilute-gas Bose-Einstein condensates (BECs). We nucleate pairs of vortices of opposite charge (vortex dipoles) by forcing superfluid flow around a repulsive Gaussian obstacle within the BEC. By controlling the flow velocity we determine the critical velocity for the nucleation of a single vortex dipole, with excellent agreement between experimental and numerical results. We present measurements of vortex dipole dynamics, finding that the vortex cores of opposite charge can exist for many seconds and that annihilation is inhibited in our trap geometry. For sufficiently rapid flow velocities, clusters of like-charge vortices aggregate into long-lived multiply charged dipolar flow structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...