Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(9): e0291589, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37713424

RESUMEN

In the last few years, extracellular vesicles (EVs) have become of great interest due to their potential as biomarkers, drug delivery systems, and, in particular, therapeutic agents. However, there is no consensus on which is the best way to isolate these EVs. The choice of the isolation method depends on the starting material (i.e., conditioned culture media, urine, serum, etc.) and their downstream applications. Even though there are numerous methods to isolate EVs, few are compatible with clinical applications as they are not scalable. In the present work, we set up a protocol to isolate EVs from conditioned media by ion exchange chromatography, a simple, fast, and scalable method, suitable for clinical production. We performed the isolation using an anion exchange resin (Q sepharose) and eluted the EVs using 500 mM NaCl. We characterized the elution profile by measuring protein and lipid concentration, and CD63 by ELISA. Moreover, we immunophenotyped all the eluted fractions, assessed the presence of TSG101, calnexin, and cytochrome C by western blot, analyzed nanoparticle size and distribution by tRPS, and morphology by TEM. Finally, we evaluated the immunomodulatory activity in vitro. We found that most EVs are eluted and concentrated in a single peak fraction, with a mean particle size of <150nm and expression of CD9, CD63, CD81, and TSG101 markers. Moreover, sEVs in fraction 4 exerted an anti-inflammatory activity on LPS-stimulated macrophages. In summary, we set up a chromatographic, scalable, and clinically compatible method to isolate and concentrate small EVs from conditioned media, which preserves the EVs biological activity.


Asunto(s)
Líquidos Corporales , Vesículas Extracelulares , Medios de Cultivo Condicionados/farmacología , Cromatografía por Intercambio Iónico , Western Blotting
2.
Pest Manag Sci ; 77(4): 2068-2077, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33342044

RESUMEN

BACKGROUND: The Diaporthe/Phomopsis complex (D/P) is a group of soybean seed-borne fungi. The use of chemical fungicides, either for seed treatment or during the crop cycle, is the most adopted practice for treating fungal diseases caused by this complex. Worldwide, there is a search for alternative seed treatments that are less harmful to the environment than chemicals. Non-thermal plasma (NTP) is a novel seed treatment technology for pathogen removal. This research aimed to evaluate the effects of NTP on the in vitro performance of pure cultures of Diaporthe longicolla and elucidate the mechanisms underlying these effects. RESULTS: Active D. longicolla mycelium, growing in vitro, was exposed to different NTP treatments, employing a dielectric barrier discharge arrangement with different carrier gases (N2 or O2 ). Fungal growth, fresh biomass and colony appearance were negatively affected by plasma treatments (TN3 and TO3). Lipid peroxidation and antioxidant activities were higher in plasma-treated colonies comparison with non-exposed colonies (control). Fungal asexual spores (conidia) were also exposed to NTP, showing high susceptibility. CONCLUSION: Exposure of D. longicolla colonies to NTP severely compromised fungal biology. Ozone production during treatment and lipid peroxidation of fungal cell membranes appeared to be involved in the observed effects. © 2020 Society of Chemical Industry.


Asunto(s)
Ascomicetos , Semillas , Glycine max , Tecnología
3.
Sci Rep ; 10(1): 4917, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188896

RESUMEN

Soybean (Glycine max (L.) Merrill) is one of the most important crops worldwide providing dietary protein and vegetable oil. Most of the nitrogen required by the crop is supplied through biological N2 fixation. Non-thermal plasma is a fast, economical, and environmental-friendly technology that can improve seed quality, plant growth, and crop yield. Soybean seeds were exposed to a dielectric barrier discharge plasma operating at atmospheric pressure air with superimposed flows of O2 or N2 as carrying gases. An arrangement of a thin phenolic sheet covered by polyester films was employed as an insulating barrier. We focused on the ability of plasma to improve soybean nodulation and biological nitrogen fixation. The total number of nodules and their weight were significantly higher in plants grown from treated seeds than in control. Plasma treatments incremented 1.6 fold the nitrogenase activity in nodules, while leghaemoglobin content was increased two times, indicating that nodules were fixing nitrogen more actively than control. Accordingly, the nitrogen content in nodules and the aerial part of plants increased by 64% and 23%, respectively. Our results were supported by biometrical parameters. The results suggested that different mechanisms are involved in soybean nodulation improvement. Therefore, the root contents of isoflavonoids, glutathione, auxin and cytokinin, and expansin (GmEXP1) gene expression were determined. We consider this emerging technology is a suitable pre-sowing seed treatment.


Asunto(s)
Glycine max/fisiología , Fijación del Nitrógeno , Nodulación de la Raíz de la Planta , Gases em Plasma , Nódulos de las Raíces de las Plantas/fisiología , Semillas , Nitrógeno/metabolismo , Fijación del Nitrógeno/efectos de los fármacos , Fenotipo , Desarrollo de la Planta , Nodulación de la Raíz de la Planta/efectos de los fármacos , Gases em Plasma/farmacología , Carácter Cuantitativo Heredable , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Semillas/efectos de los fármacos , Glycine max/efectos de los fármacos
4.
Stem Cells Int ; 2019: 8089215, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31481974

RESUMEN

Lung transplantation is a lifesaving therapy for people living with severe, life-threatening lung disease. The high mortality rate among patients awaiting transplantation is mainly due to the low percentage of lungs that are deemed acceptable for implantation. Thus, the current shortage of lung donors may be significantly reduced by implementing different therapeutic strategies which facilitate both organ preservation and recovery. Here, we studied whether the anti-inflammatory effect of human umbilical cord-derived mesenchymal stem cells (HUCPVCs) increases lung availability by improving organ preservation. We developed a lung preservation rat model that mimics the different stages by which donor organs must undergo before implantation. The therapeutic schema was as follows: cardiac arrest, warm ischemia (2 h at room temperature), cold ischemia (1.5 h at 4°C, with Perfadex), and normothermic lung perfusion with ventilation (Steen solution, 1 h). After 1 h of warm ischemia, HUCPVCs (1 × 106 cells) or vehicle was infused via the pulmonary artery. Physiologic data (pressure-volume curves) were acquired right after the cardiac arrest and at the end of the perfusion. Interestingly, although lung edema did not change among groups, lung compliance dropped to 34% in the HUCPVC-treated group, while the vehicle group showed a stronger reduction (69%, p < 0.0001). Histologic assessment demonstrated less overall inflammation in the HUCPVC-treated lungs. In addition, MPO activity, a neutrophil marker, was reduced by 41% compared with vehicle (p < 0.01). MSC therapy significantly decreased tissue oxidative damage by controlling reactive oxygen species production. Accordingly, catalase and superoxide dismutase enzyme activities remained at baseline levels. In conclusion, these results demonstrate that the anti-inflammatory effect of MSCs protects donor lungs against ischemic injury and postulates MSC therapy as a novel tool for organ preservation.

5.
Int J Mol Sci ; 20(13)2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31277213

RESUMEN

Mechanisms mediating mesenchymal stromal/stem cells' (MSCs) multipotency are unclear. Although the expression of the pluripotency factor OCT4 has been detected in MSCs, whether it has a functional role in adult stem cells is still controversial. We hypothesized that a physiological expression level of OCT4 is important to regulate MSCs' multipotency and trigger differentiation in response to environmental signals. Here, we specifically suppressed OCT4 in MSCs by using siRNA technology before directed differentiation. OCT4 expression levels were reduced by 82% in siOCT4-MSCs, compared with controls. Interestingly, siOCT4-MSCs also presented a hypermethylated OCT4 promoter. OCT4 silencing significantly impaired the ability of MSCs to differentiate into osteoblasts. Histologic and macroscopic analysis showed a lower degree of mineralization in siOCT4-MSCs than in controls. Moreover, OCT4 silencing prevented the up-regulation of osteoblast lineage-associated genes during differentiation. Similarly, OCT4 silencing resulted in decreased MSC differentiation potential towards the adipogenic lineage. The accumulation of lipids was reduced 3.0-fold in siOCT4-MSCs, compared with controls. The up-regulation of genes engaged in the early stages of adipogenesis was also suppressed in siOCT4-MSCs. Our findings provide evidence of a functional role for OCT4 in MSCs and indicate that a basal expression of this transcription factor is essential for their multipotent capacity.


Asunto(s)
Adipogénesis , Represión Epigenética , Células Madre Mesenquimatosas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Osteogénesis , Animales , Metilación de ADN , Células Madre Mesenquimatosas/fisiología , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Regiones Promotoras Genéticas
6.
J Photochem Photobiol B ; 141: 202-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25463668

RESUMEN

Antioxidant enzymes play a key role in plant tolerance to different types of stress, including ultraviolet-B (UV-B) radiation. Here we report that nitric oxide (NO) enhances antioxidant enzymes gene expression and increases the activity of specific isoforms protecting against UV-B radiation. Pre-treatments with sodium nitroprussiate (SNP), a NO-donor, prevented lipid peroxidation, ion leakage and H2O2 and superoxide anion accumulation in leaves of UV-B-treated soybean plants. Transcripts levels of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were significantly induced by SNP. These data correlated with the enhancement of particular antioxidant enzyme isoforms, such as one CAT isoform and two APX isoforms. Moreover, SNP induced the expression of three new isoforms of SOD, identified as Mn-SOD subclass. Further results showed that total activities of SOD, CAT and APX significantly increased by 2.2-, 1.8- and 2.1-fold in SNP-treated plants compared to controls, respectively. The protective effect of SNP against UV-B radiation was negated by addition of the specific NO scavenger cPTIO, indicating that NO released by SNP mediates the enhancement of antioxidant enzymes activities. In conclusion, NO is involved in the signaling pathway that up-regulates specific isoforms of antioxidant enzymes protecting against UV-B-induced oxidative stress.


Asunto(s)
Glycine max/metabolismo , Óxido Nítrico/metabolismo , Rayos Ultravioleta , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Catalasa/genética , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Nitroprusiato/química , Nitroprusiato/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Glycine max/efectos de los fármacos , Glycine max/efectos de la radiación , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/efectos de la radiación
7.
Redox Rep ; 16(2): 49-55, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21722412

RESUMEN

We have previously demonstrated that the induction of heme oxygenase-1 (HO-1) (EC 1.14.99.3) plays a protective role against oxidative stress in leaves and nodules of soybean plants subjected to cadmium, UV-B radiation, and salt stress. Here, we investigated HO-1, localization and their relationship with oxidative stress in different growth stages of soybean plants roots inoculated with Bradyrhizobium japonicum (3, 5, 7, 10, and 20 days post-inoculation) and nodules. After 7 days of inoculation, we observed a 70% increase in thiobarbituric acid-reactive substances that correlates with an enhancement in the gene expression of HO-1, catalase, and superoxide dismutase. Furthermore, the inhibition of HO-1 activity by Zn-protoporphyrin IX produced an increase in lipid peroxidation and a decrease in glutathione content suggesting that, in this symbiotic process, HO-1 may act as a signal molecule that protects the root against oxidative stress. We determined, for the first time, the tissular localization of HO-1 in nodules by electron-microscope examination. These results undoubtedly demonstrated that this enzyme is localized only in the plant tissue and its overexpression may play an important role as antioxidant defense in the plant. Moreover, we demonstrate that, in roots, HO-1 is induced by oxidative stress produced by inoculation of B. japonicum and exerts an antioxidant response against it.


Asunto(s)
Bradyrhizobium/enzimología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glycine max/enzimología , Hemo-Oxigenasa 1/metabolismo , Estrés Oxidativo , Simbiosis , Bradyrhizobium/efectos de los fármacos , Catalasa/genética , Catalasa/metabolismo , Glutatión/metabolismo , Hemo-Oxigenasa 1/genética , Técnicas para Inmunoenzimas , Peroxidación de Lípido/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Protoporfirinas/farmacología , ARN Mensajero/genética , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sales (Química)/farmacología , Glycine max/efectos de los fármacos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
8.
Pharmacology ; 87(5-6): 341-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21646819

RESUMEN

Heme oxygenase (HO) is an enzyme that is involved in numerous secondary actions. One of its products, CO, seems to have an important but unclear role in blood pressure regulation. CO exhibits a vasodilator action through the activation of soluble guanylate cyclase and the subsequent production of cyclic guanosine monophosphate (cGMP). The aim of the present study was to determine whether pathological and pharmacological HO-1 overexpression has any regulatory role on blood pressure in a renovascular model of hypertension. We examined the effect of zinc protoporyphyrin IX (ZnPP-IX) administration, an inhibitor of HO activity, on mean arterial pressure (MAP) and heart rate in sham-operated and aorta-coarcted (AC) rats and its interaction with the nitric oxide synthase (NOS) pathway. Inhibition of HO increased MAP in normotensive rats with and without hemin pretreatment but not in hypertensive rats. Pretreatment with NG-nitro-L-arginine methyl ester blocked the pressor response to ZnPP-IX, suggesting a key role of NOS in the cardiovascular action of HO inhibition. In the same way, AC rats, an experimental model of hypertension with impaired function and low expression of endothelial NOS (eNOS), did not show any cardiovascular response to inhibition or induction of HO. This finding suggests that eNOS was necessary for modulating the CO response in the hypertensive group. In conclusion, the present study suggests that HO regulates blood pressure through CO only when the NOS pathway is fully operative. In addition, chronic HO induction fails to attenuate the hypertensive stage induced by coarctation as a consequence of the impairment of the NOS pathway.


Asunto(s)
Hemo-Oxigenasa 1/biosíntesis , Hipertensión/enzimología , Óxido Nítrico Sintasa/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Presión Sanguínea/efectos de los fármacos , Monóxido de Carbono/farmacología , GMP Cíclico/metabolismo , Guanilato Ciclasa/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Hemo-Oxigenasa 1/antagonistas & inhibidores , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Hemina/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , Masculino , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Protoporfirinas/farmacología , Ratas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/metabolismo , Guanilil Ciclasa Soluble
9.
Phytochemistry ; 71(14-15): 1700-7, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20708206

RESUMEN

Heme oxygenase (HO) has antioxidant properties and is up-regulated by reactive oxygen species (ROS) in ultraviolet-B-irradiated soybean plants. This study shows that nitric oxide (NO) protects against oxidative damage and that nitric oxide synthase (NOS)-like activity is also required for HO-1 induction under UV-B radiation. Pre-treatments with sodium nitroprussiate (SNP), a NO-donor, prevented chlorophyll loss, H(2)O(2) and O(2)(*-) accumulation, and ion leakage in UV-B-treated plants. HO activity was significantly enhanced by NO and showed a positive correlation with HO-1 transcript levels. In fact, HO-1 mRNA levels were increased 2.1-fold in 0.8 mM SNP-treated plants, whereas subsequent UV-B irradiation augmented this expression up to 3.5-fold with respect to controls. This response was not observed using ferrocyanide, a SNP inactive analog, and was effectively blocked by 2-(4-carboxyphenil)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a specific NO-scavenger. In addition, experiments carried out in the presence of N(G)-nitro-L-arginine methyl ester (L-NAME) or tungsten, well-known inhibitors of NOS and nitrate reductase, showed that NOS is the endogenous source of NO that mediates HO-1 expression. In summary, we found that NO is involved in the signaling pathway leading to HO-1 up-regulation under UV-B, and that a balance between NO and ROS is important to trigger the antioxidant response against oxidative stress.


Asunto(s)
Glycine max/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/biosíntesis , Rayos Ultravioleta , Clorofila/análisis , Clorofila/metabolismo , Clorofila/efectos de la radiación , Hemo Oxigenasa (Desciclizante)/efectos de la radiación , Peróxido de Hidrógeno/análisis , NG-Nitroarginina Metil Éster/química , Óxido Nítrico Sintasa/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Hojas de la Planta/química , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Glycine max/genética , Glycine max/efectos de la radiación , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
10.
Regul Pept ; 156(1-3): 28-33, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19445972

RESUMEN

This study was performed to provide insight into the regulatory role of angiotensin II and arterial pressure on the activity of antioxidant enzymes and oxidative stress generation in the hypertensive kidney from an experimental animal model of renovascular hypertension. Aortic coarcted and sham-operated rats received vehicle, losartan or minoxidil in their drinking water. After 7 d of treatment rats were sacrificed; hypertensive kidneys were excised, and the NAD(P)H oxidase subunits expression, TBARS production, glutathione level and the activity of heme oxygenase-1 and classical antioxidant enzymes, were evaluated. Losartan administration significantly reduced oxidative stress generation decreasing NAD(P)H oxidase expression, independently of the drop in arterial pressure. On the other hand, antioxidant enzymes were regulated by arterial pressure and they were not implicated in kidney protection against oxidative damage. Findings here reported strongly suggest that clinical therapeutics with the Ang II type 1 receptor blocker prevents oxidative stress generation and may attenuate the kidney oxidative damage in the renovascular hypertension. We hypothesize that the pathway followed by the Ang II blocker to achieve this renoprotection, though independent of the primary antioxidant enzymatic system, depends on NAD(P)H oxidase downregulation.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Presión Sanguínea/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Losartán/farmacología , NADPH Oxidasas/metabolismo , Animales , Western Blotting , Glutatión/metabolismo , Hemo-Oxigenasa 1/metabolismo , Peróxido de Hidrógeno/metabolismo , Hipertensión Renovascular/tratamiento farmacológico , Técnicas In Vitro , Peroxidación de Lípido/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
11.
Int J Cell Biol ; 2009: 848516, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20130761

RESUMEN

Plants are frequently subjected to different kinds of stress, such as salinity and, like other organisms, they have evolved strategies for preventing and repairing cellular damage caused by salt stress. Glycine max L. plants were subjected to different NaCl concentrations (0-200 mM) for 10 days. Treatments with 100 and 200 mM NaCl induced ion leakage and lipid peroxidation augmentation, loss in chlorophyll content, and accumulation of O(2) (*-) and H(2)O(2). However, 50 mM NaCl did not modify these parameters, which remains similar to control values. Catalase, superoxide dismutase, and heme oxygenase (HO-1) activities and gene expressions were increased under 100 mM NaCl, while no differences were observed with respect to controls under 50 mM salt. Treatment with 200 mM NaCl caused a diminution in the enzyme activities and gene expressions. Results here reported let us conclude that HO also plays a leading role in the defense mechanisms against salinity.

12.
Phytochemistry ; 68(4): 505-12, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17174990

RESUMEN

The behavior of glutathione reductase (GR, EC 1.6.4.2) activity and isoforms were analyzed in wheat (Triticum aestivum L.) leaves and roots exposed to a chronic treatment with a toxic cadmium (Cd) concentration. A significant growth inhibition (up to 55%) was found in leaves at 7, 14 and 21 days, whereas roots were affected (51%) only after three weeks. Wheat plants grown in the presence of 100microM Cd showed a time-dependent accumulation of this metal, with Cd concentration being 10-fold higher in roots than in leaves. Nevertheless, lipid peroxidation was augmented in leaves in all experiments, but not in roots until 21 days. Cadmium treatment altered neither the GR activity nor the isoform pattern in the leaves. However, GR activity increased 111% and 200% in roots at 7 and 14 days, respectively, returning to control levels after 21 days. Three GR isoforms were found in roots of control and treated plants, two of which were enhanced by Cd treatment at 7 and 14 days, as assessed by activity staining on native gels. The changes in the isoform pattern modified the global kinetic properties of GR, thereby decreasing significantly (2.5-fold) the Michaelis constant (K(m)) value for oxidized glutathione. Isozyme induction was not associated with an enhancement of GR mRNA and protein expression, indicating that post-translational modification could occur. Our data demonstrated that up-regulation of GR activity by the induction of distinctive isoforms occurs as a defense mechanism against Cd-generated oxidative stress in roots.


Asunto(s)
Cadmio/toxicidad , Glutatión Reductasa/metabolismo , Isoenzimas/metabolismo , Hojas de la Planta/enzimología , Raíces de Plantas/enzimología , Triticum/enzimología , Cartilla de ADN , Glutatión Reductasa/genética , Isoenzimas/genética , Cinética , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , ARN Mensajero/genética , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Triticum/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA