Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 186: 108395, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33516738

RESUMEN

Neuropathic pain develops due to injury to the somatosensory system, affecting the patient's quality of life. In view of the ineffectiveness of the current pharmacotherapy, substances obtained from natural products (NPs) are a promising alternative. One NP that has been discussed in the literature is hecogenin acetate (HA), a steroidal sapogenin with anti-inflammatory and antinociceptive activity. However, HA has low water solubility, which affects its bioavailability. Thus, the objective of this study was to evaluate the anti-hyperalgesic activity of pure and complexed hecogenin acetate (HA/ßCD) in an animal model of chronic neuropathic and inflammatory pain. The inclusion complex was prepared at a molar ratio of 1:2 (HA:ßCD) by the lyophilization method. For the induction of chronic inflammatory pain, the mice received an intraplantar injection of CFA (complete Freund's adjuvant), and were evaluated for mechanical hyperalgesia and for the levels of myeloperoxidase (MPO) in the skin of the paw after eight days of treatment. HA and HA/ßCD reduced mechanical hyperalgesia in relation to the vehicle group until the fourth and fifth hours, respectively, in the acute evaluation, with a superior effect of the complexed form over the pure form in the second and third hour after treatment (p < 0.001). In the chronic evaluation, HA and HA/ßCD reduced hyperalgesia in relation to the vehicle in the eight days of treatment (p < 0.001). Both pure (p < 0.01) and complexed (p < 0.001) forms reduced myeloperoxidase activity in the skin of the animals' paw. Groups of animals subjected to the same pharmacological protocol were submitted to the partial sciatic nerve ligation (PSNL) model and evaluated for mechanical and thermal hyperalgesia, and cold allodynia. HA and HA/ßCD reduced mechanical hyperalgesia until the fourth and sixth hours, respectively, and both reduced hyperalgesia in relation to the vehicle in the chronic evaluation (p < 0.001). HA and HA/ßCD also reduced thermal hyperalgesia and cold allodynia (p < 0.05 and p < 0.001, respectively). The analysis of the spinal cord of these animals showed a decrease in the levels of the pro-inflammatory cytokines TNF-α, IL-1ß and IL-6 and a reduction in the phosphorylation of NFκB and p38MAPK, as well as a decrease in microglioses compared to the vehicle group. In addition, HA/ßCD reduced the nociception induced by intraplantar injection of agonist TRPA1 (p < 0.01) and TRPM8 (p < 0.05). Treatment for eight days with HA and HA/ßCD showed no signs of gastric or liver damage. HA and HA/ßCD were, therefore, shown to have antinociceptive effects in chronic pain models. Based on our exploration of the mechanisms of the action of HA, these effects are likely to be related to inhibited leukocyte migration, interaction with the TRPA1 and TRPM8 receptors, reduced pro-inflammatory cytokines levels, microglial expression and suppression of NF-κB p65 and p38 MAPK pathway signaling. Therefore, HA/ßCD has great potential for use in the treatment of chronic pain.


Asunto(s)
Hiperalgesia/tratamiento farmacológico , FN-kappa B/antagonistas & inhibidores , Sapogeninas/administración & dosificación , Compuestos de Espiro/administración & dosificación , Esteroides/administración & dosificación , beta-Ciclodextrinas/administración & dosificación , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Acetilación , Animales , Combinación de Medicamentos , Hiperalgesia/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Int Immunopharmacol ; 86: 106766, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32652504

RESUMEN

BACKGROUND: Limonene (LIM) and its main metabolite perillyl alcohol (POH) are ingredients found in food with promising chemical entities due to their pharmacological profile. In this study, we hypothesized that LIM and POH are two molecules capable of accelerating the regenerative process and alleviating neuropathic pain. METHODS: Animals were treated daily (LIM, POH and saline) for 28 days and during this period evaluated for mechanical hyperalgesia, astrocyte participation by immunofluorescence for GFAP, and ELISA was used to quantify IL-1ß and TNF-α in the spinal cord. Western blot analysis of the following proteins was also performed: GFAP, GAP-43, NGF and ERK. For motor deficit analysis, tests were performed to assess hind paw muscle strength and footprints through gait (SFI). RESULTS: Both POH and LIM accelerated the regenerative process and improved motor deficits comparing to positive control; however, POH was more effective, particularly between the 2nd and 3rd week after the nerve injury, increasing GAP-43, NGF and the phosphorylated ERK immunocontent. Moreover, POH and LIM were able to reduce hyperalgesia and astrocytosis. CONCLUSIONS: Both substances, LIM and POH, improved the regeneration process and sensory and motor function recovery in the PNI model in mice by mitigating the inflammatory reactions and up-regulating the neurotrophic process.


Asunto(s)
Antiinflamatorios/uso terapéutico , Aditivos Alimentarios/uso terapéutico , Limoneno/uso terapéutico , Monoterpenos/uso terapéutico , Neuronas Motoras/fisiología , Neuralgia/terapia , Traumatismos de los Nervios Periféricos/terapia , Animales , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Interleucina-1beta/metabolismo , Masculino , Ratones , Factor de Crecimiento Nervioso/metabolismo , Neuralgia/dietoterapia , Regeneración/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA