Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 110(21): 6789-802, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16722695

RESUMEN

All experimental observations of the uptake of the four title compounds on calcite are consistent with the presence of a reactive bifunctional surface intermediate Ca(OH)(HCO3) that has been proposed in the literature. The uptake of CO2 and SO2 occurs on specific adsorption sites of crystalline CaCO3(s) rather than by dissolution in adsorbed water, H2O(ads). SO2 primarily interacts with the bicarbonate moiety whereas CO2, HNO3 and HCl all react first with the hydroxyl group of the surface intermediate. Subsequently, the latter two react with the bicarbonate group to presumably form Ca(NO3)2 and CaCl2.2H2O. The effective equilibrium constant of the interaction of CO2 with calcite in the presence of H2O(ads) is kappa = deltaCO2/(H2O(ads)[CO2]) = 1.62 x 10(3) bar(-1), where CO2 is the quantity of CO2 adsorbed on CaCO3. The reaction mechanism involves a weakly bound precursor species that is reversibly adsorbed and undergoes rate-controlling concurrent reactions with both functionalities of the surface intermediate. The initial uptake coefficients gamma0 on calcite powder depend on the abundance of H2O(ads) under the present experimental conditions and are on the order of 10(-4) for CO2 and 0.1 for SO2, HNO3 and HCl, with gamma(ss) being significantly smaller than gamma0 for HNO3 and HCl, thus indicating partial saturation of the uptake. At 33% relative humidity and 300 K there are 3.5 layers of H2O adsorbed on calcite that reduce to a fraction of a monolayer of weakly and strongly bound water upon pumping and/or heating.

2.
Phys Chem Chem Phys ; 7(13): 2599-609, 2005 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16189570

RESUMEN

The heterogeneous reactivity of HOCl on solid KBr at ambient temperature has been studied using a Knudsen flow reactor. On solid KBr steady-state uptake experiments reveal the formation of Br- and Cl-containing reaction products formed in secondary reactions such as Br(2), BrCl, HOBr, BrOCl, Cl(2) and Cl(2)O with the latter two predominating in the late stages of the reaction. The uptake coefficient gamma spanning a range between 0.15 and 1 x 10(-3) and product yields of HOCl strongly depend on the nature of the solid sample, whether grain, ground grain or thin sprayed film, as well as on sample processing such as pumping and/or heating. Furthermore, the presence of adsorbed halogen species such as Br(2)(a) are crucial for the kinetics of the reaction of HOCl with solid KBr substrates. The presence of surface-adsorbed water (SAW) leads to deactivation of KBr whereas mechanical stress such as grinding leads to the formation of surface defects that become reaction centers. Desorption of SAW at T > 620 K induces high reactivity of the KBr sample at ambient temperature. A reaction mechanism encompassing all significant observations including unusual autocatalytic activity is given as there is no direct reaction of HOCl with solid KBr. It stresses the importance of adsorbed Br-containing species such as Br(2)(a) and HBr(a) that initiate the heterogeneous chemistry of HOCl on solid KBr in the presence of SAW. The role of surface acidity and SAW for the extent of reaction is emphasized.


Asunto(s)
Bromuros/química , Halógenos/química , Ácido Hipocloroso/química , Compuestos de Potasio/química , Adsorción , Catálisis , Propiedades de Superficie , Factores de Tiempo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA