RESUMEN
The Pambamarca fortress complex in northern Ecuador is a cultural and built heritage with 18 prehispanic fortresses known as Pucaras. They are mostly located on the ridge of the Pambamarca volcano, which is severely affected by erosion. In this research, we implemented a multiscale methodology to identify sheet, rill and gully erosion in the context of climate change for the prehistoric sites. In a first phase, we coupled the Revised Universal Soil Loss Equation (RUSLE) and four CMIP6 climate models to evaluate and prioritize which Pucaras are prone to sheet and rill erosion, after comparing historical and future climate scenarios. Then, we conducted field visits to collect geophotos and soil samples for validation purposes, as well as drone flight campaigns to derive high resolution digital elevation models and identify gully erosion with the stream power index. Our erosion maps achieved an overall accuracy of 0.75 when compared with geophotos and correlated positively with soil samples sand fraction. The Pucaras evaluated with the historical climate scenario obtained erosion rates ranging between 0 and 20 ton*ha-1*yr-1. These rates also varied from -15.7% to 39.1% for four future climate change models that reported extreme conditions. In addition, after identifying and overflying six Pucaras that showed the highest erosion rates in the future climate models, we mapped their gully-prone areas that represented between 0.9% and 3.2% of their analyzed areas. The proposed methodology allowed us to observe how the design of the Pucaras and their concentric terraces have managed to reduce gully erosion, but also to notice the pressures they suffer due to their susceptibility to erosion, anthropic pressures and climate change. To address this, we suggest management strategies to guide the protection of this cultural and built heritage landscapes.
Asunto(s)
Cambio Climático , Erosión del Suelo , Ecuador , Monitoreo del Ambiente/métodos , Suelo , Conservación de los Recursos Naturales/métodosRESUMEN
The origin of modern disjunct plant distributions in the Brazilian Highlands with strong floristic affinities to distant montane rainforests of isolated mountaintops in the northeast and northern Amazonia and the Guyana Shield remains unknown. We tested the hypothesis that these unexplained biogeographical patterns reflect former ecosystem rearrangements sustained by widespread plant migrations possibly due to climatic patterns that are very dissimilar from present-day conditions. To address this issue, we mapped the presence of the montane arboreal taxa Araucaria, Podocarpus, Drimys, Hedyosmum, Ilex, Myrsine, Symplocos, and Weinmannia, and cool-adapted plants in the families Myrtaceae, Ericaceae, and Arecaceae (palms) in 29 palynological records during Heinrich Stadial 1 Event, encompassing a latitudinal range of 30°S to 0°S. In addition, Principal Component Analysis and Species Distribution Modelling were used to represent past and modern habitat suitability for Podocarpus and Araucaria. The data reveals two long-distance patterns of plant migration connecting south/southeast to northeastern Brazil and Amazonia with a third short route extending from one of them. Their paleofloristic compositions suggest a climatic scenario of abundant rainfall and relative lower continental surface temperatures, possibly intensified by the effects of polar air incursions forming cold fronts into the Brazilian Highlands. Although these taxa are sensitive to changes in temperature, the combined pollen and speleothems proxy data indicate that this montane rainforest expansion during Heinrich Stadial 1 Event was triggered mainly by a less seasonal rainfall regime from the subtropics to the equatorial region.