Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Therm Biol ; 124: 103945, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39142266

RESUMEN

This study evaluated the impact of coat color (CC) and hair coat characteristics (HC) on productive and physiological traits related to thermotolerance in Angus heifers. The goal was to determine if HC and/or CC were reliable indicators of thermotolerance on a large scale for future breeding programs. Ninety-three 15-month-old Angus heifers (52 black, 41 red) were evaluated in three periods on a beef cattle farm in Brazil. Heifers were classified by CC and HC, and body weight, body condition score (BCS), and reproductive tract score (RTS) were compared between groups. In the summer evaluation, surface temperature (infrared thermography), internal temperature (intravaginal sensors), sweating rate, and behavior were assessed in a subset of heifers. Temperature-humidity index (THI) was calculated using meteorological data. The proportion of heifers with short, fine, and smooth hair (HC1) increased (P < 0.05) over the evaluations. Heifers with thick, long, and woolly hair (HC3) had lower (P < 0.05) body weights than those with finer coats, regardless of CC. Black heifers had greater (P < 0.05) puberty rates than red heifers in the first two evaluations. At a THI of 66, black heifers with HC1 exhibited a lower (P < 0.05) internal temperature compared to black heifers with HC3. At a THI of 75, all heifers with HC1 had lower (P < 0.05) internal temperatures, regardless of CC. Red heifers and those with HC3 experienced hyperthermia for longer (P < 0.05) periods. Neither HC nor CC affected (P > 0.05) surface temperatures or sweating rates. At a THI of 72, more black heifers remained standing, suggesting behavioral adaptation. In conclusion, coat color and characteristics influence thermal stress and performance in Angus heifers, though color impact is limited. Internal temperature monitoring effectively determines thermotolerance. In tropical regions, selecting for short, fine, smooth hair may improve heat tolerance.


Asunto(s)
Pelaje de Animal , Color del Cabello , Termotolerancia , Animales , Bovinos/fisiología , Femenino , Sudoración , Peso Corporal
2.
Animals (Basel) ; 14(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38929364

RESUMEN

Hyperthermia elicits several physiological and behavioral responses in livestock to restore thermal neutrality. Among these responses, vasodilation and sweating help to reduce core body temperature by increasing heat dissipation by radiation and evaporation. Thermoregulatory behaviors such as increasing standing time, reducing feed intake, shade-seeking, and limiting locomotor activity also increase heat loss. These mechanisms are elicited by the connection between peripheral thermoreceptors and cerebral centers, such as the preoptic area of the hypothalamus. Considering the importance of this thermoregulatory pathway, this review aims to discuss the hypothalamic control of hyperthermia in livestock, including the main physiological and behavioral changes that animals adopt to maintain their thermal stability.

3.
J Therm Biol ; 121: 103833, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38527387

RESUMEN

Dairy cows in pasture-based systems are more susceptible to heat stress. Holstein cows have the black or red phenotypes, the latter having lower absorbance of solar radiation. Therefore, the study's objective was to evaluate whether cows with red (R) coats are more resistant than black (B) cows to hot weather in a subtropical climate. R and B lactating Holstein cows were evaluated during the cold and hot seasons for internal and surface temperature and sweating rate. In the cold season, body temperature (n = 9/group) did not differ between groups, but the average superficial temperature (n = 13/group) was lower in R cows (B: 30.9 ± 0.3 °C; RW: 29.6 ± 0.3 °C; p = 0.02). In the hot season, under mild to moderate heat stress, mean body temperature (n = 9/group) of R cows was lower (B: 38.75 ± 0.01 °C; R: 38.62 ± 0.1 °C; p=<0.0001), whereas no difference was observed in superficial temperature (n = 17/group). The maximum internal temperature and sweating rate (n = 11/group), measured in the hot season, and the number of evaluations in hyperthermia in both seasons did not differ. Therefore, there were differences in thermoregulation between phenotypes under mild to moderate heat stress conditions. However, considering that only discrete differences were observed, the red and white coat is unlikely to benefit the Holstein cow's welfare under mild to moderate thermal stress.


Asunto(s)
Regulación de la Temperatura Corporal , Lactancia , Estaciones del Año , Animales , Bovinos/fisiología , Femenino , Brasil , Respuesta al Choque Térmico , Calor , Temperatura Corporal , Frío , Sudoración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA