Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(16)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39202232

RESUMEN

Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal (GI) tract. Fecal calprotectin (fCAL) is a noninvasive laboratory test used in the diagnosis and monitoring of IBDs such as Crohn's disease and ulcerative colitis. The fCAL send-out test that our facility has been offering so far uses an ELISA-based method. In the current study, we sought to validate the performance of a Buhlmann fCAL turbo assay in an automated Abbott Alinity C analyzer (AFCAL) in our core laboratory. Five-day imprecision studies showed good performance for both within-run (5.3%) and between-day (2.5%) measurements. The reportable range was verified as 30-20,000 µg/g. Deming regression and Bland-Altman analysis indicated a strong correlation of r = 0.99 with a low, acceptable bias of 1.8% for AFCAL relative to the predicate Buhlmann fCAL ELISA results. AFCAL's clinical performance was determined retrospectively in 62 patients with ICD codes for IBD. Overall, the implementation of AFCAL in our routine clinical testing has improved our turnaround time, reduced the cost per test, and significantly increased our clinician satisfaction.

2.
J Appl Lab Med ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045839

RESUMEN

BACKGROUND: Recently, a major manufacturer recalled several lots of iron assay reagent due to positive bias of roughly 15%-30% and the cause remains unknown. This study investigated the root cause of this positive bias and evaluated a simple practical approach to improve the assay. METHODS: Performance comparison of recalled and unimpacted iron assay kits was done utilizing calibrators, quality control (QC) materials, and 42 remnant patient samples. Spectral scan and trace elements analysis of R1 and R2 reagents was performed. Copper (Cu) and thiourea (TU) spiking experiments were utilized to elucidate the cause and prevention of positive bias seen with recalled lots. RESULTS: Iron measurements in QC materials and patient samples using recalled reagents generated a positive bias of 17.5% and 21%, respectively. Correspondingly, the recalled R2 reagents, but not R1, showed a rise in basal absorbance along with an unanticipated presence of Cu (22.7 µg/dL) and lead (7.5 µg/L). Cu spiking to recalled and unimpacted R2 reagent intensified the reagent color besides falsely increasing its absorbance, calibration factor, and patient iron measurements. Interestingly, addition of TU (65 mmol/L) to R2 reagent from unimpacted lot prevented the short-term and prolonged Cu-induced spurious rise in calibration factor and patient iron estimations. CONCLUSIONS: We conclude that accidental copper contamination of R2 reagent during manufacturing could be a reason underlying the positive bias in the recalled iron reagent lots. Addition of TU in ferene-containing R2 reagent is a simple and effective means to prevent Cu-induced false elevation in iron values.

3.
Viruses ; 15(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37896822

RESUMEN

The presence of a certain group of auto-antibodies (AAbs) is known to correlate with the severity of COVID-19. It is, however, unknown if such AAbs are prevalent and impact COVID-19-related outcomes in lung transplant recipients (LTRs) who are immunosuppressed. We performed a retrospective study of LTRs with COVID-19 and analyzed samples before and after COVID-19 for IgG AAbs. AAbs analysis was carried out using autoimmune and coronavirus microarray and the resulting cross-sectional differences in Ab-scores and clinical variables were analyzed using Fischer's Exact test for categorical variables and a paired t-test for continuous variables. Linear regression was used to analyze the differences in Ab-scores and COVID-19 severity. LTRs with non-severe [NS gp (n = 10)], and severe [S gp (n = 8)] COVID-19 disease were included. Ferritin and acute respiratory failure were higher in the S group (p = 0.03; p < 0.0001). Among the AAbs analyzed, interferon-related AAbs (IFN-alpha2, IFN-beta, IFN lamba, IFN-epsilon), eight interleukin-related AAbs, and several tissue-related AAbs were also found to be changed significantly from pre- to post-COVID-19 (p < 0.05). IFN-lambda (p = 0.03) and IL-22 (p = 0.002) were significantly associated with COVID-19 severity and remained significant in linear regression analysis while controlling for other variables. AAbs are common in LTRs, and certain groups of antibodies are particularly enhanced in LTRs with severe COVID-19. Preliminary observations of this study need to be confirmed by a larger sample size.


Asunto(s)
COVID-19 , Humanos , Autoinmunidad , Estudios Retrospectivos , Receptores de Trasplantes , Estudios Transversales , Inmunoglobulina G , Pulmón
4.
Neuropharmacology ; 227: 109436, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36693561

RESUMEN

Neurotoxic regimens of methamphetamine (METH) are known to increase reactive oxygen species (ROS), affect redox homeostasis, and lead to damage in dopamine neurons. Functional changes induced by long-term METH self-administration on mitochondrial respiratory metabolism and redox homeostasis are less known. To fill this gap, we implanted a jugular catheter into adult male mice and trained them to nose poke for METH infusions. After several weeks of METH exposure, we collected samples of the ventral striatum (vST) and the ventral midbrain (vMB). We used HPLC to determine the levels of the ROS scavenger glutathione in its reduced (GSH) and oxidized forms. Then, we used high-resolution respirometry to determine the oxygen consumption rate (OCR) of mitochondrial complexes. Finally, using in vivo electrophysiology, we assessed changes in dopamine neuron firing activity in the VTA. METH self-administration produced a decrease of the GSH pool in vST, correlating with lifetime METH intake. We observed increased mitochondrial respiration across the two mesolimbic regions. METH self-administration decreases firing rate and burst activity but increases the number of spontaneously active dopamine neurons per track. We conclude that METH self-administration progressively decreased the antioxidant pool in sites of higher dopamine release and produced an increase in mitochondrial metabolism in the mesolimbic areas, probably derived from the increased number of dopamine neurons actively firing. However, dopamine neuron firing activity is decreased by METH self-administration, reflecting a new basal level of dopamine neurotransmission.


Asunto(s)
Metanfetamina , Masculino , Ratones , Animales , Metanfetamina/farmacología , Dopamina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Consumo de Oxígeno , Cuerpo Estriado/metabolismo
5.
Sci Rep ; 10(1): 13968, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811851

RESUMEN

Defects in neuromuscular innervation contribute significantly to the age-related decline in muscle mass and function (sarcopenia). Our previous studies demonstrated that denervation induces muscle mitochondrial hydroperoxide production (H2O2 and lipid hydroperoxides (LOOHs)). Here we define the relative contribution of mitochondrial electron transport chain (ETC) derived H2O2 versus cytosolic phospholipase A2 (cPLA2) derived LOOHs in neurogenic muscle atrophy. We show that denervation increases muscle cPLA2 protein content, activity, and metabolites downstream of cPLA2 including LOOHs. Increased scavenging of mitochondrial H2O2 does not protect against denervation atrophy, suggesting ETC generated H2O2 is not a critical player. In contrast, inhibition of cPLA2 in vivo mitigates LOOH production and muscle atrophy and maintains individual muscle fiber size while decreasing oxidative damage. Overall, we show that loss of innervation in several muscle atrophy models including aging induces generation of LOOHs produced by arachidonic acid metabolism in the cPLA2 pathway contributing to loss of muscle mass.


Asunto(s)
Peróxidos Lipídicos/metabolismo , Fosfolipasas A2/metabolismo , Sarcopenia/terapia , Animales , Citosol/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Estrés Oxidativo/efectos de los fármacos , Sarcopenia/metabolismo
6.
Geroscience ; 42(4): 1101-1118, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32394347

RESUMEN

Mice lacking the superoxide anion scavenger CuZn superoxide dismutase (Sod1-/- mice) develop a number of age-related phenotypes, including an early progression of muscle atrophy and weakness (sarcopenia) associated with loss of innervation. The purpose of this study was to delineate the early development of sarcopenia in the Sod1-/- mice and to measure changes in the muscle transcriptome, proteome, and eicosanoid profile at the stage when sarcopenia is markedly induced in this model (7-9 months of age). We found a strong correlation between muscle atrophy and mitochondrial state 1 hydroperoxide production, which was 40% higher in isolated mitochondria from Sod1-/- mouse gastrocnemius muscle by 2 months of age. The primary pathways showing altered gene expression in Sod1-/- mice identified by RNA-seq transcriptomic analysis are protein ubiquitination, synaptic long-term potentiation, calcium signaling, phospholipase C signaling, AMPK, and TWEAK signaling. Targeted proteomics shows elevated expression of mitochondrial proteins, fatty acid metabolism enzymes, tricarboxylic acid (TCA) cycle enzymes, and antioxidants, while enzymes involved in carbohydrate metabolism are downregulated in Sod1-/- mice. LC-MS analysis of lipids in gastrocnemius muscle detected 78 eicosanoids, of which 31 are significantly elevated in muscle from Sod1-/- mice. These data suggest that mitochondrial hydroperoxide generation is elevated prior to muscle atrophy and may be a potential driving factor of changes in the transcriptome, proteome, and eicosanoid profile of the Sod1-/- mice. Together, these analyses revealed important molecular events that occur during muscle atrophy, which will pave the way for future studies using new approaches to treat sarcopenia.


Asunto(s)
Sarcopenia , Animales , Redes y Vías Metabólicas , Ratones , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Estrés Oxidativo , Sarcopenia/metabolismo
7.
Geroscience ; 42(2): 765-784, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32144690

RESUMEN

Age-related muscle weakness and loss of muscle mass (sarcopenia) is a universal problem in the elderly. Our previous studies indicate that alpha motor neurons (α-MNs) play a critical role in this process. The goal of the current study is to uncover changes in the aging spinal cord that contribute to loss of innervation and the downstream degenerative processes that occur in skeletal muscle. The number of α-MNs is decreased in the spinal cord of wildtype mice during aging, beginning in middle age and reaching a 41% loss by 27 months of age. There is evidence for age-related loss of myelin and mild inflammation, including astrocyte and microglia activation and an increase in levels of sICAM-1. We identified changes in metabolites consistent with compromised neuronal viability, such as reduced levels of N-acetyl-aspartate. Cleaved caspase-3 is more abundant in spinal cord from old mice, suggesting that apoptosis contributes to neuronal loss. RNA-seq analysis revealed changes in the expression of a number of genes in spinal cord from old mice, in particular genes encoding extracellular matrix components (ECM) and a 172-fold increase in MMP-12 expression. Furthermore, blood-spinal cord barrier (BSCB) permeability is increased in old mice, which may contribute to alterations in spinal cord homeostasis and exacerbate neuronal distress. Together, these data show for the first time that the spinal cord undergoes significant changes during aging, including progressive α-MNs loss that is associated with low-grade inflammation, apoptosis, changes in ECM, myelination, and vascular permeability.


Asunto(s)
Neuronas Motoras , Médula Espinal , Envejecimiento , Animales , Astrocitos , Ratones , Ratones Endogámicos C57BL , Médula Espinal/fisiopatología
8.
Front Neurosci ; 13: 487, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31213966

RESUMEN

Many Amyotrophic Lateral Sclerosis (ALS) patients experience hypermetabolism, or an increase in measured vs. calculated metabolic rate. The cause of hypermetabolism and the effects on neuronal metabolism in ALS are currently unknown, but the efficacy of dietary interventions shows promise for metabolism as an ALS therapeutic target. The goal of this study is to measure changes in metabolic pathways as a function of disease progression in spinal cords of the SOD1G93A mouse model of ALS. We conducted a comprehensive assessment of protein expression for metabolic pathways, antioxidants, chaperones, and proteases in lumbar spinal cord from male SOD1G93A mice at pre-onset, onset, and end-stages of the disease using targeted proteomic analysis. These results reveal that protein content of metabolic proteins including proteins involved in glycolysis, ß-oxidation, and mitochondrial metabolism is altered in SOD1G93A mouse spinal cord well before disease onset. The changes in mitochondrial metabolism proteins are associated with decreased maximal respiration and glycolytic flux in SOD1G93A dermal fibroblasts and increased hydrogen peroxide and lipid hydroperoxide production in mitochondria from sciatic nerve and gastrocnemius muscle fibers at end stage of disease. Consistent with redox dysregulation, expression of the glutathione antioxidant system is decreased, and peroxiredoxins and catalase expression are increased. In addition, stress response proteases and chaperones, including those involved in the mitochondrial unfolded protein response (UPRmt), are induced before disease onset. In summary, we report that metabolic and stress response changes occur in SOD1G93A lumbar spinal cord before motor symptom onset, and are primarily caused by SOD1G93A expression and do not vary greatly as a function of disease course.

9.
Redox Biol ; 20: 68-74, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30296699

RESUMEN

Molecular targets to reduce muscle weakness and atrophy due to oxidative stress have been elusive. Here we show that activation of Sarcoplasmic Reticulum (SR) Ca2+ ATPase (SERCA) with CDN1163, a novel small molecule allosteric SERCA activator, ameliorates the muscle impairment in the CuZnSOD deficient (Sod1-/-) mouse model of oxidative stress. Sod1-/- mice are characterized by reduced SERCA activity, muscle weakness and atrophy, increased oxidative stress and mitochondrial dysfunction. Seven weeks of CDN1163 treatment completely restored SERCA activity and reversed the 23% reduction in gastrocnemius mass and 22% reduction in specific force in untreated Sod1-/- versus wild type mice. These changes were accompanied by restoration of autophagy protein markers to the levels found in wild-type mice. CDN1163 also reversed the increase in mitochondrial ROS generation and oxidative damage in muscle tissue from Sod1-/- mice. Taken together our findings suggest that the pharmacological restoration of SERCA is a promising therapeutic approach to counter oxidative stress-associated muscle impairment.


Asunto(s)
Debilidad Muscular/metabolismo , Atrofia Muscular/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Aminoquinolinas/farmacología , Animales , Benzamidas/farmacología , Biomarcadores , Calcio/metabolismo , Femenino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Modelos Biológicos , Contracción Muscular/genética , Debilidad Muscular/genética , Atrofia Muscular/genética , Estrés Oxidativo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
10.
J Cachexia Sarcopenia Muscle ; 9(5): 987-1002, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30328290

RESUMEN

BACKGROUND: Cancer cachexia occurs in approximately 80% of cancer patients and is a key contributor to cancer-related death. The mechanisms controlling development of tumour-induced muscle wasting are not fully elucidated. Specifically, the progression and development of cancer cachexia are underexplored. Therefore, we examined skeletal muscle protein turnover throughout the development of cancer cachexia in tumour-bearing mice. METHODS: Lewis lung carcinoma (LLC) was injected into the hind flank of C57BL6/J mice at 8 weeks age with tumour allowed to develop for 1, 2, 3, or 4 weeks and compared with PBS injected control. Muscle size was measured by cross-sectional area analysis of haematoxylin and eosin stained tibialis anterior muscle. 2 H2 O was used to assess protein synthesis throughout the development of cancer cachexia. Immunoblot and RT-qPCR were used to measure regulators of protein turnover. TUNEL staining was utilized to measure apoptotic nuclei. LLC conditioned media (LCM) treatment of C2C12 myotubes was used to analyse cancer cachexia in vitro. RESULTS: Muscle cross-sectional area decreased ~40% 4 weeks following tumour implantation. Myogenic signalling was suppressed in tumour-bearing mice as soon as 1 week following tumour implantation, including lower mRNA contents of Pax7, MyoD, CyclinD1, and Myogenin, when compared with control animals. AchRδ and AchRε mRNA contents were down-regulated by ~50% 3 weeks following tumour implantation. Mixed fractional synthesis rate protein synthesis was ~40% lower in 4 week tumour-bearing mice when compared with PBS controls. Protein ubiquitination was elevated by ~50% 4 weeks after tumour implantation. Moreover, there was an increase in autophagy machinery after 4 weeks of tumour growth. Finally, ERK and p38 MAPK phosphorylations were fourfold and threefold greater than control muscle 4 weeks following tumour implantation, respectively. Inhibition of p38 MAPK, but not ERK MAPK, in vitro partially rescued LCM-induced loss of myotube diameter. CONCLUSIONS: Our findings work towards understanding the pathophysiological signalling in skeletal muscle in the initial development of cancer cachexia. Shortly following the onset of the tumour-bearing state alterations in myogenic regulatory factors are apparent, suggesting early onset alterations in the capacity for myogenic induction. Cancer cachexia presents with a combination of a loss of protein synthesis and increased markers of protein breakdown, specifically in the ubiquitin-proteasome system. Also, p38 MAPK may be a potential therapeutic target to combat cancer cachexia via a p38-FOX01-atrogene-ubiquitin-proteasome mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA