Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 154, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323126

RESUMEN

Superconductivity is ubiquitous as evidenced by the observation in many crystals including carrier-doped oxides and diamond. Amorphous solids are no exception. However, it remains to be discovered in quasicrystals, in which atoms are ordered over long distances but not in a periodically repeating arrangement. Here we report electrical resistivity, magnetization, and specific-heat measurements of Al-Zn-Mg quasicrystal, presenting convincing evidence for the emergence of bulk superconductivity at a very low transition temperature of [Formula: see text] K. We also find superconductivity in its approximant crystals, structures that are periodic, but that are very similar to quasicrystals. These observations demonstrate that the effective interaction between electrons remains attractive under variation of the atomic arrangement from periodic to quasiperiodic one. The discovery of the superconducting quasicrystal, in which the fractal geometry interplays with superconductivity, opens the door to a new type of superconductivity, fractal superconductivity.

2.
Phys Rev Lett ; 108(6): 066403, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22401093

RESUMEN

From detailed angle-resolved NMR and Meissner measurements on a ferromagnetic (FM) superconductor UCoGe (T(Curie)∼2.5 K and T(SC)∼0.6 K), we show that superconductivity in UCoGe is tightly coupled with longitudinal FM spin fluctuations along the c axis. We found that magnetic fields along the c axis (H∥c) strongly suppress the FM fluctuations and that the superconductivity is observed in the limited magnetic-field region where the longitudinal FM spin fluctuations are active. These results, combined with model calculations, strongly suggest that the longitudinal FM spin fluctuations tuned by H∥c induce the unique spin-triplet superconductivity in UCoGe. This is the first clear example that FM fluctuations are intimately related with superconductivity.

3.
Phys Rev Lett ; 105(20): 206403, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21231251

RESUMEN

We have carried out direction-dependent 59Co NMR experiments on a single crystal sample of the ferromagnetic superconductor UCoGe in order to study the magnetic properties in the normal state. The Knight-shift and nuclear spin-lattice relaxation rate measurements provide microscopic evidence that both static and dynamic susceptibilities are ferromagnetic with strong Ising anisotropy. We discuss that superconductivity induced by these magnetic fluctuations prefers spin-triplet pairing state.

4.
Phys Rev Lett ; 97(1): 017005, 2006 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16907401

RESUMEN

We carried out ac magnetic susceptibility measurements under pressures P on the heavy fermion antiferromagnet CeRhIn5. We report bulk superconductivity (SC) at ambient pressure with a transition temperature Tc approximately or equal to 90 mK. The degraded SC in a powdered or polished sample was restored by annealing, showing that the SC state is sensitive to inhomogeneity. In a coexistence region of the SC with antiferromagnetism (AF), we find that Tc(P)(n)TN(P)(1-n) = const where TN indicates a Néel temperature and n denotes a ratio of electronic specific heat coefficients below and above TN, indicating the competition of the SC and the AF for states at the Fermi surface.

5.
Nature ; 420(6912): 143-4; discussion 144, 2002 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-12432381
6.
Phys Rev Lett ; 89(3): 037002, 2002 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12144411

RESUMEN

We report (27)Al Knight shift ( (27)K) measurement on a single-crystal UNi(2)Al(3) that reveals a coexistence of superconductivity and a spin-density-wave (SDW) type of magnetic ordering ( T(SDW) = 4.5 K). The spin part of (27)K, (27)K(s), does not change down to 50 mK across the superconducting (SC) transition temperature T(c) approximately 0.9 K. In contrast with the isostructural compound UPd(2)Al(3) ( T(c) approximately 2 K), which was identified to be a spin-singlet d-wave superconductor, the behavior of (27)K strongly supports that UNi(2)Al(3) , like UPt(3) and Sr(2)RuO(4), belongs to a class of spin-triplet SC pairing state superconductors.

7.
Phys Rev Lett ; 88(23): 237203, 2002 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-12059393

RESUMEN

We report the discovery of a jump in the magnetization of a macroscopic single crystalline sample of UGe2 that shows coexistence of ferromagnetism and superconductivity. In particular, we observe that the jump occurs at regular intervals of field and only at very low temperatures. This novel feature implies that the magnetic field induces a sudden change of the direction of the magnetization between two equivalent easy axes of magnetization even in a macroscopic sample. We ascribe it to a field-tuned resonant tunneling between quantum spin states, and we propose that the size of a magnetic domain is smaller than a superconducting coherence length.

8.
Nature ; 410(6826): 340-3, 2001 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11268203

RESUMEN

The electronic structure of heavy-fermion compounds arises from the interaction of nearly localized 4f- or 5f-shell electrons (with atomic magnetic moments) with the free-electron-like itinerant conduction-band electrons. In actinide or rare-earth heavy-fermion materials, this interaction yields itinerant electrons having an effective mass about 100 times (or more) the bare electron mass. Moreover, the itinerant electrons in UPd2Al3 are found to be superconducting well below the magnetic ordering temperature of this compound, whereas magnetism generally suppresses superconductivity in conventional metals. Here we report the detection of a dispersive excitation of the ordered f-electron moments, which shows a strong interaction with the heavy superconducting electrons. This 'magnetic exciton' is a localized excitation which moves through the lattice as a result of exchange forces between the magnetic moments. By combining this observation with previous tunnelling measurements on this material, we argue that these magnetic excitons may produce effective interactions between the itinerant electrons, and so be responsible for superconductivity in a manner analogous to the role played by phonons in conventional superconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...